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Deliverable 4.1

Abstract

One of the abjectives in MeBeSafe is the coaching of drivers, in particular heavy
goods vehicle (HGV) drivers, on their driving behaviour. Risky driving behaviour can
lead to crashes but by coaching drivers on their driving behaviour we can reduce
risky driving behaviour, therefore reducing crashes and as a result increase traffic

safety.

The deliverable serves as a progress report. The objective was to investigate what
data is needed for coaching of heavy goods vehicle drivers, how we can collect
these data, what variables are relevant for driver profiling and how we can use

these variables for driver profiling.

With regards to technology, our recommendation is to collect data on driving
behaviour and driving context with a mobile phone, augmented with inward- and
outward-facing cameras where possible. In terms of driver profiling we aimed to
capture “the tendency to behave a certain way in a certain situation or context " and
distinguish meaningfully between different situations or contexts in which a
particular type of behaviour occurs. Therefore driver profiles were developed
using driving behaviour variables measured by telematics, including context
information. “The Traffic Safety Wheel" was developed, a representation of driver
profiles where we can compare driver behaviour with fleet behaviour across
varying driving contexts. Based on the results further decisions can be made on

how to proceed in this MeBeSafe project.
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Glossary

Term Definition/explanation

Competences Dispositions that allow an individual to master variable
situations successfully and responsibly and can be seen as
fundamentals for learning. This includes motivational and
violational aspects.

Driver profiling Profiles based on driving behaviour in order to distinguish
between different styles of driving (risky versus safe) or
between driving behaviours in different situations.

Naturalistic driving A research method wherein every day trips by drivers are
recorded by unobtrusive data acquisition systems with the
aim of providing insights into actual driver behaviour.

Traffic safety wheel A visualization of driver profiles based on driving behaviour
and context.
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Executive Summary

Objective

One of the objectives of the MeBeSafe project is the coaching of drivers, in particular
heavy goaods vehicle (HGV) drivers, in order to improve their driving behaviour. This is
part of Work Package 4. The objective in this deliverable is to investigate what data is
needed for the coaching of heavy goods vehicle drivers, how we can collect these
data, what variables are relevant for driver profiling and how we can use these
variables for driver profiling. The aim of driver profiling is to create profiles based on
driving behaviour in order to distinguish between different styles of driving (risky

versus safe) or between driving behaviours in different situations.

This deliverable serves as a progress report and the results can be used as input for
the design of coaching schemes and the app that will measure and give feedback on

driving behaviour (Task 4.3) and eventually for the field evaluation test in WP5,
Measuring risky driving behaviour

Risky driving behaviour can lead to crashes. By coaching drivers on their driving
behaviour the aim is to reduce risky driving behaviour, therefore reducing crashes and
consequently increasing traffic safety. The following behaviours related to risky
driving, or so called Key Performance Indicator (KPI) variables, are focused on for
coaching in this study: harsh braking, harsh cornering, close following, lane deviations,
drowsiness/fatigue, distraction, speeding, and optionally fuel consumption. Research
has indicated that these behaviours are related to traffic safety (Hanowski, Perez, &
Dingus, 2005; FMCSA, 2006; Olsen, Hanowski, Hickman, & Bocanegra, 2008S; Saberg,
Selpi, Piccinini, & Engstrom 2015; Dingus et al., 2016; SWOV, 2016) and are therefore
relevant for coaching. The technology that was considered for measuring driving
behaviour were IVMS (In Vehicle Monitoring System) and mobile phone. Results show
that roughly the same KPI variables can be measured by these devices. Although

IVMS can measure certain variables more precisely than the mabile phone, a great

MeBeSafe 12

RN

(®)



Deliverable 4.1

disadvantage of IVMS is the fact that not all vehicles have the same system installed.
This is a problem, because the software that is used to read the data from the [VMS
needs to be adapted for every system, making it a costly and time consuming
endeavour. Also, data like speed limits, weather conditions, and type of road are
relatively easily combined with data collected by a mobile phone, but not as easily
with an IVMS system. Therefore, the mobile phone is a better option to use for

collecting data on driving behaviour in the current MeBeSafe project.

Measuring driving behaviour on itself is often not sufficient, as behaviour should be
put into context whenever possible. The characteristics of the driving environment
can influence how a driver behaves and it is therefore of importance to also take
driving context into account when looking at driving behaviour. For example, in an
urban environment drivers will most likely have to brake harshly more often
compared to when driving on a highway. Drivers that drive more in urban
environments will therefore show more harsh braking behaviour compared to drivers
that drive more often in rural environments. Consequently, a difference between
drivers could be the result of differences in the environment they are driving in, and
not so much their actual driving behaviour. It is therefore important to consider the
characteristics of the trips and situations the drivers are in, to generate a fair
representation of driving behaviour. Cameras can capture additional driving behaviour
as well as information on the environment. Cameras would therefore be of great
value for collecting additional information for coaching. Outward-facing cameras
would give more information on the conditions a driver is in, for example traffic
density can be measured and videos of relevant situations can be saved and shown
to a driver. Inward-facing cameras could provide information on distraction and
drowsiness, both important factors related to traffic safety. Nevertheless, it is of
importance to realise that drivers might have issues with having cameras installed in
their vehicle due to privacy, and in some countries outward-facing cameras are not
legally allowed. These are still concerns that need to be dealt with while investigating

the possibilities of collecting data.
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To further understand why a driver is behaving in a certain way we need to look at
the characteristics of a driver. The behaviour of a driver can be influenced by
characteristics like personality, attitude, age, experience and competences. These
factors can be measured by questionnaires. However, several studies point out that
the validity of questionnaires measuring personality and driving behaviour is low and
that more research is needed before questionnaire data can be used for driver
profiling. We therefore refrain from using questionnaires for driver profiling based
on personality, competences and attitude. Nevertheless, gaining additional insights
into why a driver behaves in a certain manner by looking into competences,
personality and attitudes, is difficult to do so other than by questionnaires, interviews

or tests (simulator, hazard perception tests).
Driver profiling

In terms of driver profiling we aimed to capture “the tendency to behave a certain
way in a certain situation or context ", and distinguish meaningfully between different
situations or contexts in which a particular type of behaviour occurs. Therefore driver
profiles were developed using KPI variables measured by telematics, including driving

context information.

The "Traffic Safety Wheel" was developed, a representation of driver profiles wherein
we can compare driver behaviour with fleet behaviour across varying driving
contexts. As shown in Figure 0.7 below, we can make a distinction between driving
behaviour of a driver compared to average fleet behaviour; and we can make a
distinction between driver behaviour in different contexts, like highway compared to
city. The driving behaviour variables we measure are shown on the axes. Note that
these driver profile representations stays close to the KPI variables we wish to
optimize. The shape that results from this mapping gives an overview of how well a
driver scores on each of the KPI variables. A larger surface in the safety wheel implies
that a driver shows more aberrant behaviour compared to a smaller surface in a

safety wheel.
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Traffic Safety Wheel Traffic Safety Wheel

&
—p—+—+— Speeding
$

+—+—1 Speeding

Figure O0.1'The Traffic Safety Wheel". A representation of driver profiles wherein we can compare driver behaviour
with fleet behaviour across varying driving contexts showing driving behaviour variables on the axes.

The safety wheel as presented serves as a foundation for driver profiles which could
be used for coaching, but it is not yet intended to use directly as visualization for
drivers - although it might. For the latter purpose, the safety wheel should first be
tested by HGV drivers and usability experts on visual appeal and ease of use, possibly
followed by a redesign. Furthermore, in the app used on the mobile phone and for
coaching there could be an additional focus on emphasizing positive driving behaviour,
next to risky behaviour, the former of which is not most naturally represented in the
traffic safety wheel. But could be visualised for example by using a “positive” green
colour as background colour, when variable values are closer to the centre of the
traffic safety wheel more of the green colour is shown. Another option would be to
use a kind of "bull's eye” visualization. Further development of the Traffic Safety

Wheel would be needed if it will be incorporated in the project.

Based on the results described in this deliverable further decisions can be made on
what driver profiles can be used and how data should be collected for Work Package

4,
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1 Introduction

1.1 MeBeSafe

The aim of the MeBeSafe project is to develop, implement and validate measures that
direct road users towards safer behaviour in common traffic situations. MeBeSafe is
looking to do this by changing habitual traffic behaviour using ‘nudging” and coaching,
with the aim of improving driving behaviour. Nudging is a technique that
subconsciously stimulates drivers to drive safer, while with coaching, drivers are
given feedback on their driving behaviour by a coach in order to enhance driving
performance and learn about their own driving behaviour. The work in this deliverable

is focussed on coaching, in particular heavy goods vehicle (HGV) drivers.

MeBeSafe is organised in altogether six work packages (WPs), as shown in Figure 7.1.

The coaching of drivers on their driving behaviour is part of Work Package 4.

WP1
Integrated Framework

Measures Development

Wp2
In-vehicle WP WP4
. Infrastructure _ .
Nudging Driver Coaching

. Measures
Solutions

juawageuely 322loid
9dM

WP5
Field Evaluation

Figure 1.1 Work packages in MeBeSafe.

Work Package 4 focuses on the development of a driver coaching scheme, a
supporting coaching app that can be used to coach HGV drivers and an evaluation of

the coaching scheme. HGV drivers that will be approached to participate in the study

MeBeSafe 16

RN

Q(m-a

{/



Deliverable 4.1

are working for hauliers contracted by Shell. The work package consists of the

following 4 tasks:

1) Profiling drivers for whom, and situations wherein the coaching scheme could
be used and tested (task 4.1);

2) Defining the methodology for the evaluation of the scheme (task 4.2);

3) Development of the coaching scheme and coaching app and a small-scaled
pilot (task 4.3);

4) Evaluation of the coaching schemes and app based on the pilot results (task

44).

The end result of WP4 consists of a coaching scheme and a coaching app that can be
used for a large-scale field evaluation in WP5. In this deliverable the work in task 4.1

is described.
1.2 Objective of this deliverable

Risky driving behaviour can create dangerous situations in traffic and these dangerous
situations can then result into crashes. Preventing unsafe behaviour can therefore
lead to a decline of the number of deaths and injured in traffic. In 2014, 25,539 fatal
road accidents took place in Europe. 15% of these fatal accidents were HGV-related
(Volvo Trucks, 2017). Furthermore, non-fatal accidents can lead to severe injuries,
especially since HGV are large vehicles with a gross weight above 3.5 tonnes. Giving
drivers insights into their driving behaviour by coaching can result in safer driving
behaviour (Karlsson et al., 2017). To coach the drivers, coaching schemes need to be
developed which describe how drivers will be coached on what behaviours, with which
frequency, etc. In addition a “coaching app” will be developed that gives drivers
feedback on their driving behaviour. The objective in this deliverable is to investigate
what data is needed for coaching of heavy good vehicle drivers, how we can measure
these data, what variables are relevant for driver profiling and how we can use these

variables for driver profiling. The aim of driver profiling is to create profiles based on
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driving behaviour in order to distinguish between different styles of driving (risky
versus safe) or between driving behaviours in different situations. The results serve
as input for task 4.3: the development of coaching schemes and suggestions made in

this deliverable will need to be further developed.

In the following paragraphs of the introduction the underlying approach for this
deliverable is described. Starting with discussing the risky driving behaviours that will

be the focus for coaching.
1.3 Risky driving behaviour by HGV drivers

In MeBeSafe deliverable 1.1 (Karlsson et al., 2017) it was concluded that HGV drivers
are experienced drivers that generally know how to drive safely and efficiently,
though they do not always use their safe driving skills to its full extent. Increasing
drivers’ motivation to drive safer is therefore mentioned as an option for coaching.
This can be done by giving insights into risky driving behaviours that could be
improved. The following variables related to risky driving are of focus for coaching in
this study: harsh braking, harsh cornering, close following, lane deviations,
drowsiness/fatigue, distraction, and speeding. Research has indicated that these
behaviours are related to traffic safety (Hanowski, Perez, & Dingus, 2005; FMCSA,
2006; Olsen, Hanowski, Hickman, & Bocanegra, 2009; Saberg, Selpi, Piccinini, &
Engstrom 2015; Dingus et al., 2016; SWOV, 2016) and are therefore relevant for
coaching. We call these driver behaviour variables Key Performance Indicator (KPI)
variables throughout the deliverable. In addition, fuel consumption could also be
maonitared, since drivers and hauliers could be interested in the financial and
environmental aspects of reducing fuel consumption. This could give an added

motivation for drivers and hauliers to join the project.

Driving behaviour can be influenced by several factors, amongst others, the design
of theroad system, road user competences or skills, road user states and personality

and attitude (Karlsson et al,, 2017). As suggested in deliverable 1.1 the driving context
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might not always support HGV drivers to drive safely. It is therefore of importance
when looking at driving behaviour to also take driver characteristics (such as age,
attitude and personality), situational and environmental factors into account. In this
deliverable we therefore examine how driving behaviour, driver characteristics and

context can be measured.
1.4 Measuring driving behaviour, driver characteristics and driving context

To be able to coach drivers on their driving behaviour, we need to know how they
generally behave. For this purpose data needs to be collected on their driving
behaviour. These data can then be processed into an overview of a driver’s behaviour.
This overview can for example show how often a driver has been speeding or how
often the driver has been braking harshly during a particular trip. The overview of
driving behaviour then serves as the basis for feedback to drivers and which, in turn,
can generate insight to the drivers about how risky they are behaving in traffic.
Coaches can use the overview to give concrete feedback to drivers, which can help

with gaining insights.

There are several ways to measure driving behaviour. In this deliverable we examine
different options to collect data on driving behaviour, driver characteristics and
context of the driving situation, which could be used as a basis for coaching. The aim
is to give an overview of the possibilities. One way to measure driving behaviour is by
using telematics; variables that can be measured and registered by a monitoring
device located in the vehicle. This can be an internal in vehicle monitoring system
(IVMS), but can also be an app on a mobile phone. Variables like GPS position,
acceleration and speed can be measured. Telematics can be enriched by video data
and map data. Video and map data can provide information that can be used to identify
the influence of the context on driving behaviour. For example, inward-facing cameras
in a truck could capture drowsiness, distraction and inattention, while outward-facing
cameras on a truck could capture the infrastructure and other road users. Map data

could provide information on the type of road (rural, urban, highway), presence of
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intersections and speed limit. Another way to collect information about driving
behaviour, but also on driver and/or organisation characteristics and demographics is
by means of questionnaires or interviews. These data can give further insights into
why a driver behaves in a certain manner. For example by asking questions about the
drivers’ attitude towards safe or risky driving. In addition, competences could be
measured by questionnaires, possibly in combination with a simulator or other tests

(a hazard perception test for example).

Besides examining how driving behaviour variables, driver characteristics and driving
context factors should be measured, we will also look at using driver profiling to see
if we can distinguish between risky driving behaviour and safe driving behaviour and

distinguish between different situations.
1.5 Driver profiling

When we measure variables by telematics, questionnaires or video and map data we
can get more or less detailed insight into driving behaviour of an individual driver. With
coaching we can give tailored feedback to drivers on their behaviour. We can give
positive feedback when they are driving safely (or safer than others) and we can give
feedback to improve their risky driving behaviour. This can be done through an app,
by face-to-face coaching or a combination of both. The intended result of coaching is
that their driving behaviour improves or that they are triggered to continue to drive
safely. In this deliverable we examine how we can use driver profiling to further tailor

the coaching efforts.

With driver profiling we aim to design driver profiles based on driver behaviour, the
environment, demographics, competences or other driver characteristics in order to
distinguish between different styles of driving (risky versus safe) or between driving

behaviours in different situations. This can be done in several ways.

One way is to distinguish sub groups or grade drivers in terms of how risky they drive

using questionnaires, with the aim of distinguishing between risky and safe drivers.

MeBeSafe 20

RN

(®)



Deliverable 4.1

These sub groups of drivers could be coached differently and these different groups
could respond differently to coaching. We can choose for example to coach risky
driving behaviour more extensively than drivers with safe driving behaviour. Because
different sub groups could respond differently to coaching it is valuable to look at
this while evaluating the coaching schemes. When drivers are already driving safely
most of the time, coaching might not have any effect on them, while drivers that show
more risky driving behaviour might benefit more from coaching. If we are able to
make a distinction between drivers using driver profiling we can look at what effect
coaching has on the different sub groups. It should be noted that these are options to
be considered for how we can use driver profiling for coaching, but still needs to be

investigated further.

Another way to use driver profiling would be to look at driving behaviour in different
contexts, like urban and rural roads and design driver profiles to distinguish between
situations. To be able to distinguish between drivers and driving behaviour we need to
look at the variables that can be measured and are relevant for distinguishing
between different situations categories. By categorizing driving behaviour for
different contexts we can visualise how driving behaviour differs between types of
context. Or we could visualise driving behaviour of a specific driver in relation to

average driving behaviour of a population.
1.6 Report structure and contribution by partners
In this deliverable we focus on:

o How to collect data on driving behaviour, driver characteristics and driving
context and;
o Driver profiling based on driving behaviour, driver characteristics and the

driving context or situation.

We work towards a model of representing driving behaviour and driver profiles with

a clear relationship to the KPI variables identified earlier, which can be used to
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compare individual drivers to others, to distinguish meaningfully between driving in

different contexts (situations), and which can be visualized in such a way to allow for

meaningful interpretation.

The chapters are written by different authors. The structure of the deliverable is as

follows: (see Table 1.7for an overview):

o Chapter 2 provides input on how to collect data on driving behaviour focussing
on capturing driving behaviour with IVMS and with a mobile phone.

o Chapter 3 explores whether to include driving context in driver profiling and
what thresholds could be used for braking and speeding events. To do so,
naturalistic driving data has been used to study actual driving behaviour.
Furthermore, the relation of data collected by questionnaires with actual
driving behaviour is investigated.

o Chapter 4 focusses on how we can include information on the environment to
generate a better understanding of the context that influences (risky) driving
behaviour. This chapter provides input on how to collect data on driving
behaviour and driving context using cameras installed in the vehicle and
software developed by the company Cygnify.

o Chapter 5 describes the added value of knowledge on driver competences for
coaching and how to measure these. This chapter provides input on how to
collect data on driver competences and suggests a driver competence model.

o Chapter 6is a literature review focussed on the possibilities of driver profiling
based on data collected with questionnaires. Specifically, driving behaviour,
demographics, driving experience, personality and attitude are looked at.

o The conclusion in Chapter 7 summarises the main findings on how we can
collect data on driving behaviour, driver characteristics and context; which
methods are advised to use for the current goal and how we can use this data

to create driver profiles.
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Chapter Title Main focus Author
Collecting Driver profiling
data

Ch.2  Measuring driving behaviour  Driving Saskia de

with IVMS and mobile behaviour and Craen,

phones context Shell/SWOV
Ch.3 Driver profiling based on Driving Driving Reinier Jansen,

Naturalistic Driving data behaviour characteristics  SWOV

and context

Ch.4  Collecting data on driving Driving Bram Bakker,

behaviour and context based behaviour and Cygnify

on automated and video- context

based situation analysis
Ch.5  Measuring driver Driver Norah

competences competences Neuhuber,

Virtual Vehicle

Ch.6  Driver profiling based on Driver Simone

questionnaires characteristics ~ Wesseling,

SWOV

Table 1.1 Overview of the chapters, the focus of the chapter on either collecting data or driver profiling and their

author

This deliverable can be seen as a progress report and different possibilities of

collecting data and driver profiling have been explored. No definitive decisions are

made in this deliverable vet. Further steps will be taken in the project to decide on

how to proceed. The findings in this deliverable are a basis for these decisions.
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2 Measuring driving behaviour with IVMS and mobile phones

MeBeSafe aims to change driver behaviour as means of reducing road related deaths.
Technology is @ mode by which such a change can be delivered, monitored and
measured. This chapter describes the technology that already exists within the Shell
fleet! that can be used to collect data for the MeBeSafe project?. It is focused on which
data can be measured with 'In Vehicle Monitoring Systems' (IVMS; Section 2.7) and with

a mobile phone (using a driving app; Section 2.2).

In the MeBeSafe project we need information to feed the driving app, as input for the
coaching scheme and information for the evaluation of app and coaching scheme (i.e.
Key Performance Indicators). As already indicated in the introduction, variables that

are considered most relevant for the project are:

o (Unnecessary) harsh braking
o Speeding

o Distraction

o (lose following

o Harsh cornering

o Lane departure warnings

o Fuel consumption

In addition this chapter will assess if existing technology can be used to collect

contextual data:

o Location (route), date and time of a trip

' The definition Shell fleet includes vehciles owned and operated by Shell which are typically light
vehicles and also the vehicles that are operated on our behalf by Contractors which are typically the
heavy vehicles and buses. For MeBeSafe, and this chapter, we only consider heavy goods vehicles
(HGV's)

2 This information is based on existing expertise and experience with measuring driving behaviour within
the Shell fleet.
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o (Characteristics of the roads (e.g. urban/rural roads)

o Conditions (weather, congestion, etc.)

The following questions will be answered:

1. Can IVMS and/or mobile phone data be used to calculate (some of) these
variables? What are the pros and cons?

2. What are the advantages and disadvantages of each method?

2.1 IVMS data

Existing fleet and professional driver behaviour monitoring technology assists
companies to understand and improve safety and cost performance outcomes. The
technology, commonly referred to as telematics, is a combination of hardware that
is installed within the vehicle (NB: there are a variety of providers and data stream
processes/output and version changes/updates) and telecommunications
(capabilities to share data in real time or at pre-determined intervals) that enable the

data to be accessed and analysed via a web browser.

In the Shell fleet the telematics used for driver and vehicle monitoring is via ‘In Vehicle
Manitoring Systems' referred to as IVMS. However, not all fleet vehicles have IVMS
installed, and of those that do some hauliers only activate a proportion of what is
actually available from the vendors, while other hauliers use the data streams and
actively further analyse the data offline. Some hauliers even map locations with
relatively high harsh braking events to identify potentially dangerous locations that

can be used to prepare drivers for a particular route or trip.

Furthermore, the feedback received by a driver may vary from a detailed monthly
printed report that includes graphs of braking, speeding and accelerations against fuel
consumption with information on how to improve their behaviour (all of which is
supported by a face to face engagement with their supervisors), to very little formal
feedback but rather an annual discussion with their line manager regarding overall

behaviour for the year. Some businesses provide incentives whilst others do not. So
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within the Shell global business there is a large range of availability and use of IVMS

by the different hauliers.

Data streams that can be typically captured from IVMS systems in the Shell fleet

include:

o Working hours per shift

o Driving hours per shift

o Engine start and stop times
o Engine running time

o Engine idling time

o Engine revolutions

o Brakes On

o Brakes Off

o Unauthorised routes

o Number of trips

o Second by second rep/post-accident data

There are a number of different variables that can be obtained via IVMS and that are
relevant for the MeBeSafe project. These are described in more detail in the next

section.

2.1.1 IVMS variables

Braking & Harsh Braking

Braking the vehicle in a smooth and progressive manner demonstrates that the
driver has goad control of the vehicle and is anticipating the road ahead. Braking

and harsh braking is recorded if it exceeds pre-defined limit.

IVMS Limitation:

IVMS data cannot determine if the harsh brake was avoidable or not. However,

there are two things that can be derived from analysis of harsh braking data:
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1) Identify those drivers who harsh brake often, on many locations: that is a
driver behavioural trait that needs to be addressed.

2) Identify those locations where all drivers harsh brake, that is an
infrastructure issue. In this case opportunities for planning alternative
routes should be considered and driver briefings should alert all drivers to

the risks associated with these locations.

Facts:

o Braking wastes fuel since the engine has used fuel to get vehicle to the
desired speed

o Harsh braking wastes even more fuel because it will usually require more
gear changes to get vehicle back to the desired speed

o Braking causes wear to the braking components which will affect
mMaintenance costs

o Harsh braking is dangerous to yourself and other road users, especially on
wet roads

o Use of the exhaust brake will save fuel and reduce wear on brake

components

Speed

Speeding — either not complying with speed limits or having a too high speed for
the current traffic situation - is dangerous. It increases the risk of a crash involving
the truck and other road users. Additionally, speeding can have a negative effect

on fuel economy due to aerodynamic drag.

IVMS Limitation:

IVMS can measure speed of the vehicle at any given time, however it cannot

determine if the speed was suitable for the driving conditions.
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IVMS may be able to determine if the vehicle was traveling within the speed limits
if the limits are incorporated into the GPS map of the area, or if not available

within the GPS mapping system then within a speed defined geo fenced region.

Facts:

o The higher the driving speed, the more fuel is consumed

o A significant fuel saving can be seen when reducing speed

o The higher the driving speed, the mare time is required to stop the vehicle
safely and the greater the momentum that may be carried into a collision

o Excessive speeding can put unnecessary stress on the engine and gearbox

Harsh cornering

Newer IVMS units can measure harsh cornering through XYZ accelerometers. This
is now widely available on new IVMS products and has been adopted as a
minimum standard for all new devices bought after February 2017 within the
Shell fleet. The means of capturing the vent is the same as for harsh acceleration

and harsh braking.

IVMS Limitation:

Similar to harsh braking, IVMS data cannot determine if the harsh cornering was
avoidable or not. However also with harsh cornering, there are two things that can

be derived from analysis of data:

1) Identify those drivers who harsh corner often, on many locations: that is a

driver behavioural trait that needs to be addressed.

2) Identify those locations where all drivers harsh corner, that is an
infrastructure issue. In this case opportunities for planning alternative routes
should be considered and driver briefings should alert all drivers to the risks

associated with these locations.
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o Harsh cornering increases wear on tyres and suspension components

o Frictional losses during harsh cornering contribute to increased fuel
consumption

o G-forces increase the risk of loads moving if not correctly secured and
hence creating greater risk of further incidents (lost loads, rollovers)

o Data from within the Shell fleet suggests a correlation between harsh

cornering and rollover rate.

Eco-Band Driving or Smooth driving

Although running outside the Eco-Band primarily has a negative effect on fuel
economy there is also an (indirect) relationship to safe driving. For smooth driving
it is important for drivers to look ahead, predict and anticipate on how traffic
situations will evolve (i.e. to have a good ‘Situation Awareness' (SA; (Endsley,

1995)).

IVMS Limitation:

IVMS can measure a number of factors which combined result in smooth driving
and anticipation (harsh acceleration, braking, turning, engine revolutions). Although
there is no overall ‘'metric’ to measure smooth driving, this should be strongly

inferred from events recorded for the four factors mentioned.

Facts:

o The engine has an optimum speed range where it produces the most

torque and this is known as the “Eco-Band” or “Green Band"
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Location (route), date and time of a trip

IVMS can report route / location through GPS and date and time of trip. Time and
space geofences can be set up if needed to flag deviations from desired route /

route timings (e.g. night driving).

IVMS Limitation:

The IVMS system can determine road type only crudely through the driven speed,
but cannot determine specific denotations of road classification and any context
that goes with that. With ‘add ons' such as maps (local or remote), that carry
information about the type of roads (e.g. urban or rural, speed limits, etc.) on the

route, this information can be available.

Facts:

o The driven routes are recorded for each trip and this can be used against
other trip data to make safety judgements about location and time of

certain routes

A number of other variables are measured with IVMS. They are primarily related to
fuel consumption and reducing maintenance costs, but are not directly related to road
safety. These variables are therefore less relevant for the MeBeSafe project. These

are.

o Harsh Acceleration
The acceleration of the vehicle should be steady and progressive where ever
possible. Harsh accelerations will be recorded if it exceeds a pre-defined limit.
o Engine Idling
Running an engine on idle with the vehicle stationary will impact the fuel
economy since it is consuming fuel and not travelling any distance. This
measure cannot determine why the vehicle was idling over the period of time,

only that is was.
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o Over-Rev
Over-rewing the engine also puts unnecessary strain on the engine

components.

Relevant variables that cannot be measured with IVMS are the following:

o Distraction
IVMS can only measure driving characteristics of the vehicle, not the
underlying reason (e.g. distraction) of certain driving behaviour,

o Close following
Although most Shell trucks are equipped with Adaptive Cruise Control (ACC),
the following distance is not captured by IVMS.

o Lane departure warning
Some trucks in the Shell fleet have a lane departure warning system installed
as standard. Information on how often or on which locations this system gives
a warning cannot be read or used for analysis.

o External conditions (weather, congestion, etc.)
As the IVMS system anly measures vehicle characteristics, data on traffic and

weather conditions are not available

2.1.2 IVMS thresholds

In order to determine whether or not a particular driver's behaviour is ‘good’ or ‘bad'
relative to company reguirements and expectations, a set of thresholds are used for
Shell contractors. Each vehicle/driver is monitored and assessed against this set of
thresholds for the different output measures. Table 2.7 displays the thresholds for a

number of IVMS variables.
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Variables Light Vehicles Heavy Vehicle
Metric Imperial ‘G’ Metric Imperial ‘G’
Force Force
Acceleration 10-12 6-756 0.27- 6-8 4-5 0.17-

Threshold (HA)  kph/sec  mph/sec  03g kph/sec  mph/sec 02g

Deceleration 10-12 6-7.5 0.27- 10-12 6-7.5 0.27-
Threshold (HB) ~ kph/sec  mph/sec 03g kph/sec  mph/sec 0.3g

Harsh Turning 3.0m/s - 031g 3.0m/s - 031g
(HT) 2 Z

Maximum Speed  Follow published country or asset maximum speed limits

Table 2.1 Thresholds for driver behaviour measured by IVMS that are used by Shell.

2.1.3 Conclusion on IVMS data

Not all vehicles currently utilised within the Shell Fleet use and report on IVMS data.
Furthermore the quality and detail of available data differ between contractors,
hauliers, country and region. The thresholds are consistent overall but some hauliers
have set thresholds in a different format that is not necessarily easy to compare

across fleets.

Thus, IVMS can reliably measure some of the relevant variables for the MeBeSafe

project; but not all of them.

2.2 Smartphone data

Shell has developed bath telematics and smartphone based technology to support
its commercial and digital services offerings for businesses and consumers.
Smartphones have recently been seen not only as a communication interface, but as
a measurement device as well. The ability to capture more data points at a fraction

of the cost compared to IVMS is attractive, but we need to establish what information
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can be captured directly and indirectly to enable us to evaluate the effectiveness,

applicability and suitability.

In the fleet environment, the smartphone is considered as a secondary device to any
other telematics device because of potential smartphone security (in terms of theft)
and the fact that it can be switched off (i.e. driver chooses when to record or not
record). Typically, large fleet companies have sophisticated and necessary telematics
to help manage their operations, but smartphone technology is still a contender as
an alternative and can appeal to both these large fleets, where complimenting
information is available, as well as the smaller fleets, whose investment levels into

telematics are not viable.

2.2.1 Smartphone / app variables

An app that uses mobile phone measurements can define a combination of driving
behaviours against defined targets and weightings in order to monitor basic driving

styles. These driving behaviours are:

o Harsh Acceleration — number of times thresholds are exceeded which vary
with speed

o Harsh Braking — number of times thresholds are exceeded which vary with
speed

o Smooth Driving — how well the driver controls changes of speed (both

increasing and decreasing )

Each individual behaviour rating (e.g. 0-100% of the driving time, or number of events)
can be calculated at the end of each journey. The individual measurements are
aggregated to produce an overall, weighted performance score. For any

measurement the following attributes could be included:

o Date and time
o Vehicle speed

o @PS Lat/Long
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In theory, this will allow us to correlate and integrate other information with common
attributes (ie. type of roads, darkness, weather), allowing to measure driving

behaviour in a certain context.

Other measurements could be included in this weighting as more inputs are

considered. In theory the following variables can be measured using a smart phone:

o Speeding
It should be possible to measure speeding behaviour by combining the drivers’
speed with local speed limits. However, it is not possible to determine if the
speed was suitable for the driving conditions. The measurement of driving
speed can be enhanced with accelerometers, but this would mean that the
smartphone would need to be docked. In addition, the responses are known to
vary device to device and brand to brand, so the accuracy of these devices will
need to be evaluated accordingly.

o Harsh cornering
This can be measured using the accelerometers in the smartphone, but again
this creates a docked device dependency and differences between devices.
Alternative options include use of map data attributes to help determine harsh
cornering; but this could be quite expensive.

o Fuel consumption
Whilst we do not have a connection to vehicle CANbus to measure this directly,
the impact of driving style on fuel consumption can be estimated on a relative
basis. This can help drivers better understand which manoeuvres demand
most fuel consumption. A comparison to actual fuel consumption could
provide information on the accuracy of this estimate (algorithm developed by

Shell).
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o Location information (i.e. urban/non-urban)
Currently it is not possible to determine road type. In theory it is possible to
combine GPS information with public map data; but costs and accuracy need
to be evaluated.

o Conditions (weather, congestion, etc.)
Currently we cannot determine local weather conditions to make any
judgements against any resulting impacts. In theory it is possible to combine
GPS information with public map data; but costs and accuracy need to be

evaluated.

Relevant variables that cannot be measured with a mobile phone or an app are the

following:

o Distraction
A mobile phone / driving app cannot capture the underlying reason (e.g.
distraction) of a certain driving style.

o Close following
At the moment, a mabile phone cannot measure the distance to a lead vehicle.
We can explore the use of proximity sensors, vehicles are increasingly being
produced with such safety systems built-in.

o Lane departure warning

This cannot be measured with a maobile phone.

2.2.2 Smartphone thresholds

In order to determine whether or not a particular driver is ‘good’ or ‘bad’ relative to
company requirements and expectations, a set of thresholds for driving behaviour
variables have been established by Shell. Each vehicle/driver is monitored and
assessed against this set of thresholds for the different output measures. Table 2.2

displays the thresholds for a number of variables.
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Parameter Light Vehicles
Acceleration Threshold (HA) 1.0 m/s2
Deceleration Threshold (HB) 1.0 m/s2
Smooth Driving +/-0.75 m/s2

Table 2.2 Thresholds for driver behaviour measured by mobile phone that are used by Shell.

2.2.3 Conclusion on Smartphone data

Using a smartphone as a measurement device to collect data on driving behaviour
enables quick installation for many vehicles, because no expensive (IVMS) technology
has to be installed in the vehicle. A smartphone can be seriously considered as a data
logging system as well as an audio-visual interface for the driver. Through careful
and clever development of algorithms, the smartphone will measure a high

proportion of fleet operations and driving behaviours.

The security of the smartphone and making mandatory use of this are challenges
that should be evaluated specifically. It is assumed that there is a level of general
adoption of smartphones within targeted fleets, which enables easier integration and

familiarisation of drivers with smartphones.

2.3 (Conclusions

IVMS and an app/mabile phone can measure (roughly) the same variables (see Table
2.3).IVMS is more accurate; but not all vehicles are equipped with (the same) systems,
which makes it very hard to compare drivers (for evaluation). Furthermore when the
final app that will be used for coaching and coaching scheme that will be developed
in the MeBeSafe project rely on a certain type of IVMS data, this will exclude many
companies from implementing the app and coaching scheme in their organisation. A
disadvantage of using a mobile phone to measure driving behaviour is that it relies on

how many drivers own and turn on their maobile phone while driving.

MeBeSafe 36

RN

(®)



Deliverable 4.1

RN

(®<)

Variables

IVMS

Mobile phone

(unnecessary) harsh
braking
Speeding

Distraction

Close following

Harsh cornering

Lane departure warning
Fuel consumption
Location (route), date and
time of a trip

Urban/rural route

Conditions (weather.,

congestion, etc.)

+ /-
Only if we connect it to
map data; but cannot give

information real time

Possibly if combined with
public map data

+

Has to be connected to map

data

++

Possibly if combined with
public map data
Possibly if combined with
public map data

Advantages

Disadvantages

Accurate information

Not all vehicles are
equipped with (the same)

systems

All drivers can use it (no need
to install expensive equipment)
We need to ensure drivers

turn the device on

Table 2.3 The KP! variables that can be measured with IVMS and mobile phone.

In the next chapter thresholds that are used for detecting risky behaviour events are

explored as well as the influence of driving context on driving behaviour,
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3 Driver profiling based on Naturalistic Driving data

This chapter explores whether to include driving context in driver profiling and what
thresholds could be used for braking and speeding events. To do so, naturalistic
driving data has been used to study actual driving behaviour. Furthermore, the
relation of data collected by questionnaires with actual driving behaviour is

investigated.

A harsh braking manoeuvre is sometimes unavoidable, for example when a child
suddenly emerges from between two parked cars to cross a street (note: this does
not mean that the driver is not to blame). Other harsh braking manoeuvres may, in
hindsight, be avoidable, such as when a driver chooses to drive above the speed limit
just before entering an intersection, the traffic light suddenly turns orange, and the
driver does not wish to risk running a red light. Ideally drivers anticipate the
occurrence of potentially dangerous situations, so that they do not have to brake

(harshly) at all.

Therefare, in a coaching setting one should not focus on the dichotomous question
of whether drivers perform a harsh braking manoeuvre or not (i.e., sometimes they
are unavoidable). Instead, one should review to what extent a driver differs from
his/her colleagues (or compared to a previous measurement of the same driver) in
terms of how often, how harsh, and in which situations harsh braking manoeuvres

were performed.

With regard to speeding, professional truck drivers have to balance the fine line of
driving as fast as possible within tolerable limits on the one hand (i.e., time is money),
and driving as safe as possible on the other hand. Analogous to harsh braking, one
should review how often speeding occurs across drivers, with which magnitude
speeding occurs, and if speeding occurs in specific situations (e.g., at roads with
particular speed limits). Harsh braking events may co-occur with speeding events, for
instance if the earlier described traffic light scenario occurs often. Co-occurring

events may be of particular interest for a coaching session, since an improvement on
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the one event type is likely to vield an improvement on the other event type (here: a

lower driving speed will reduce the harshness of braking events).

Naturalistic Driving (ND) data offers an opportunity to study harsh braking and
speeding events as they occur in a truck driver's natural, everyday environment. The
challenge of analysing ND data is that events of interest (here: harsh braking and
speeding) have to be found in a relatively large database. It is common practice in ND
studies to implement triggers to identify events, for instance by comparing the
momentary value of longitudinal acceleration with a pre-defined negative threshold
value (note: a negative acceleration values corresponds with deceleration). The start
of an event is then marked by the moment when the longitudinal acceleration drops
below the threshold, and the end is marked by the moment when the signal increases

rises above the threshold again.

However, the actual threshold value that has been chosen to identify harsh braking
events differs greatly across previous ND studies with trucks. For example, the NDTS
project (Olson et al., 2009) uses a threshold of -1.96 m/s? to identify safety critical
events, whereas the DDWS FQOT project (Olson et al., 2009) uses a speed-dependent
threshold of either -3.43m/s? (driving speed 224km/h) or -4.91m/s? (driving speed
<24km/h). The EuroFOT project (Malta et al., 2012) also uses a speed-dependent
threshold that increases linearly from -5.4m/s? to -3.6m/s? when the speed
increases from 50km/h or less to 150km/h. Furthermore, personal communication
with staff at Shell revealed that they use a threshold of -2.65 to -2.94m/s? in their in-
vehicle monitoring systems (also see Section 3.7.2). To summarise, there is no
agreement on the acceleration threshold beyond which one speaks of a harsh braking

event.

As previous studies have not provided sufficient input for a choice of threshold values,
a focused study has been performed on the database of the UDRIVE project (Van Nes
et al, 2018). In the UDRIVE project, a fleet of trucks from four Dutch transport

companies has been equipped with multiple video cameras and sensors, through
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which continuous driving data (e.g. acceleration, local speed limits) has been
collected. The primary aim of this study is to explore the impact of trigger threshold
values on the frequency of emerging events across driving contexts. The results may
inform the conceptualization and/or implementation of driver profiles. The ND studies
reported earlier used either a fixed or a speed-dependent threshold value.
Consequently, the chosen threshold value could not be evaluated compared to
alternative threshold values. In contrast, the threshold value was systematically
manipulated in the present study. First, a liberal value was chosen as initial trigger
threshold (e.g., a deceleration relatively close to zero), resulting in a large number of
events. Second, a categorization of the resulting events was performed according to
the peak value registered in each event (e.g., the maximum deceleration value), and in

terms of driving context (e.g., speed limits).

The secondary aim of this study is related to self-reported attitudes on driving,
personality, and age. Data collected by questionnaires are typically related to self-
reported and registered traffic offenses to determine validity (see Chapter 6 of this
deliverable). In contrast, the UDRIVE database offers the opportunity to relate
questionnaire data to actual driving behaviour, including unreported and unregistered
behaviour. Therefore, this study also explores the relation between attitudes and
personality on the one hand, and the frequency of harsh braking and speeding events

on the other hand.
3.1 Method

3.1.1 Description of truck drivers, trucks, and records in UDRIVE

Behavioural and subjective data has been collected from 43 drivers in the UDRIVE
truck database, using Volvo FL and Volvo FM trucks. There were 42 males and 1
female, with ages between 22 and 71 years, of which three drivers had an age below
30 vears (M=49.0, SD=11.2). The dataset consists of 54658 records with a minimum
distance of Tkm (maximum: 56Tkm, M = 10.8, 5D = 17.0), and a total distance of
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592700km. Most records covered a relatively small distance. For example, 39803
records (i.e., 73% of the sample) had a distance below 10km, and only 1725 records
(i.e., 3% of the sample) had a distance above 50km. The distribution of record distance
for the Volvo FL and Volvo FM trucks is similar. Therefore, no further distinction will

be made between the truck types in subsequent analyses.

Figure 3.1 shows that the number of records and the total distance driven differ
across drivers. Although the majority of records fall within the range of 1-10km for
all drivers (left panel of Figure 3.7), the total distance covered per driver (right panel)
is typically accumulated through records longer than 10km. In case of one driver, the

distance covered originates mainly from records with a distance longer than 50km.

Distribution records across drivers

Record frequency Cumulative record distance
5 60
Record distance Record distance
Ml >50km so4 M >50km
41 [20-50km [H 20-50km
1 10-20km [110-20km
- M 1-10km — M 1-10km
o € 401
o X
o 3 o
— o
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Figure 3.1 Frequency of records (left) and cumulative distance (right) per driver, as function of record distance
category. NOTE: the order in which the drivers are represented differs between the panels.

3.1.2 Trigger implementation

Three event triggers have been implemented in the UDRIVE truck database for the
purpose of the present MeBeSafe investigation. Two of them correspond with harsh

braking (i.e., through longitudinal acceleration and longitudinal jerk), and one with
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speeding. Table 3.7 summarizes the trigger implementation. Triggers for harsh
braking have only been implemented for records with Volvo FM trucks (N = 26),

because the Volvo FL trucks did not provide a longitudinal acceleration signal.

Trigger type Description

Harsh braking (1) Brake pedal depressed, longitudinal acceleration smaller than or
equal to -2.94m/s?, with driving speed at the event onset larger than
or equal to Bkm/h.

Harsh braking (2)  Brake pedal depressed, longitudinal jerk (i.e., first time-derivative of
longitudinal acceleration) smaller than -2m/s? and longitudinal
acceleration smaller than -2m/s?, with a minimum duration of 0.2
and driving speed at the event onset larger than or equal to 10km/h.

Speeding Driving speed larger than the posted speed for a minimum duration
of 15s. Four categories of speeding above posted speed: light (O-
109%), moderate (11-15%), severe (16-20%), and extreme (>21%).

Nore: Multiple triggers within a 2 seconds window have been joined into a single event. Only triggers in records
with a minimum total distance of Tkm have been included.

Table 3.7 Initial thresholds for five event triggers.

Several map matching attributes have been collected for each of the trigger types in
Table 3.1, such as the posted speed at the onset of an event, and whether the event
took place at an intersection. In addition, the peak value of longitudinal acceleration
has been collected to explore the relation between threshold values and event

frequency.
3.1.3 Subjective data on attitude and personality

Within the UDRIVE project, subjective data on (driving-related) attitudes and
personality has been collected for each participant through five questionnaires with
Likert scales. The Driver Attitude Questionnaire (DAQ; Parker et al., 1996) explores
attitudes toward speeding and close-following. The Driving Behaviour Questionnaire
(DBQ; Lajunen et al., 2004) involves errors, ordinary violations, and aggressive

violations. The Driving Style Questionnaire (DSQ; French et al, 1993) contains 15
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questions related to, among others, speeding, calmness, and focus. The Traffic Locus
Of Control (T-LOC; Ozkan & Lajunen, 2005) explores perceived causes of road
accidents, and finally, the Arnett Inventory of Sensation Seeking (AISS; Arnett, 1994)

concerns personality in terms of the sub-scales intensity and novelty.
3.1.4 Procedure

The harsh braking (2) and speeding (1) triggers have been implemented in the UDRIVE
database through Matlab scripts. Triggers where the speed limit was unavailable
were excluded. Next, the mean frequency of harsh braking events across speed limits
was calculated. As will be shown, there appear to be three speed limit clusters with
distinct harsh braking event frequencies. Therefore, subsequent analysis of harsh
braking events on the level of individual drivers has been performed separately for
each speed limit cluster. Triggers related to speeding events have also been examined
across speed limits. However, no analysis on the level of individual drivers has been
performed, because none of the observed speeding events could have resulted in a

financial penalty according to Dutch legislation.

Harsh braking events have been categorized according to their maximum acceleration
or jerk value. The correlation between event frequencies across speed limit clusters
has been calculated for each acceleration threshold category, using SPSS v.24. Based
on the correlations, an acceleration threshold was chosen for subsequent linear
multiple regression analysis on the relation between driving attitudes and event
frequencies. Predictors in this analysis included only attitude sub-scales with a

Cronbach alpha larger than G.6.
3.2 Results

Three drivers have been excluded from analysis. Two Volvo FM drivers were
excluded because speed data were missing and one Volvo FL driver because
questionnaire data was missing. Hence, the remaining sample corresponds with 40

participants, of whom 24 drove a Volvo FM truck.
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3.2.1 Harsh braking events across speed limits

Only Volvo FM trucks have been considered in the analysis on harsh braking events,
as Volvo FL trucks did not provide a longitudinal acceleration signal. Of the 24 Volvo
FM drivers in the sample, 17 featured at least one harsh braking event. All 24 Volvo
FM drivers featured one or mare harsh braking events. In total, 8303 harsh braking
trigger events were found based on longitudinal acceleration. In 3028 events, the
brake pedal was activated, and each of those events occurred in a unique record. The
average distance in these records was 17.6km (5D = 24.0km, minimum: 1.0km,
maximum: 277km), which is slightly larger than, but within one standard deviation of,
the average distance of entire sample of records. The speed limit was unknown in
973 cases, and incorrect in 24 cases (i.e., a speed limit of 90km/h is normally not
used in the Netherlands, where the data were collected). Furthermore, the
longitudinal jerk trigger vielded a dataset consisting of 201 events (including the use
of the brake pedal), of which 62 cases featured an unknown or incorrect speed limit.
Consequently, 2031 longitudinal acceleration events and 139 longitudinal jerk events
have been used in subsequent, separate analyses. Table 3.2 provides an overview of

the driving contexts in which the harsh braking trigger events have been found.
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Trigger Location Speed limit (km/h) Total
signal
30 50 60 70 80 100 120&130
Longitudinal  Intersection 68 256 S 29 83 7 8 467
Acceleration
Elsewhere 78 631 47 359 310 9 48 1564
Total 146 887 53 388 393 108 56 2037
Longitudinal  Intersection 2 10 1 2 16 1 0 32
Jerk
Elsewhere 4 41 2 25 24 9 2 107
Total 6 51 3 27 40 10 2 139
Total distance (x1000km) 33 245 29 121 336 827 68.0 2270

Nore: Volvo FL trucks have been omitted from the total distance, because no harsh braking trigger could be
implemented. Speed limits 120km/h and 130km/h have been merged due to their similar road design.

Table 3.2 Overview of harsh braking events as function of speed limit.

Mast harsh braking events occurred at a speed limit of 50km/h, followed by 80km/h
and 70km/h. However, the distance covered at roads with a speed limit of 50km/h
was shorter than the distance at 70km/h and 80km/h roads. Furthermore, Figure 3.1
shows that for some drivers substantially more data has been collected than for
others. For each participant, the number of events per km has been calculated to
account for such differences in distance. Also, the average number of events per km
was calculated across drivers, where a weight was applied to each driver proportional
to the distance driven by that driver at each speed limit. The result of these
calculations is displayed in Figure 3.2, in which the horizontal axis contains seven

speed limits, and the vertical axis displays the event frequency.
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Harsh braking events across speed limits
4.0

Threshold longitudinal acceleration
B -3.5 < PeakAcc <=-3.0
B -4.0 < PeakAcc <=-3.5
[]-4.5 < PeakAcc <= -4.0
Bl -5.0 < PeakAcc <= -4.5

3.0 O PeakAcc <=-5.0

2.0

0.0

Speed I|m|t km/h

Mean event frequency (/100km)

120+

Figure 3.2 Harsh braking event frequency as function of speed limit and threshold for longitudinal acceleration.
NOTE: PeakAcc = lowest longitudinal acceleration value within event, in m/s2. See text for more details.

The minimum value of longitudinal acceleration (‘PeakAcc’ in Figure 3.2) was recorded
for each harsh braking event to enable a comparison of event frequencies at five
threshold values: -3.0m/s?, -3.5m/s?, -4.0m/s?, -4.5m/s?, and 5.0m/s?. These values
span the range found in previous ND studies with trucks (Malta et al., 2012; Olson et
al., 2009). At each speed limit, most events had an acceleration value between -
3.0m/s? and -3.5m/<?. In Figure 3.2 this finding is represented by the blue part of each
bar, where each ‘stack’ represents the event frequency in the threshold range set by

two subsequent threshold values.

At the most liberal threshold (i.e., -3.0m/s?), it appears there are three clusters of
speed limits with a similar event frequency (i.e., total bar height). The highest event
frequencies are found in urban areas (speed limits: 30, 50, 70km/h). In rural areas
(speed limits: 60, B0km/h) the average event frequency is approximately 2-3 times
lower than in urban areas. Finally, at highways (speed limits: 100, 120+km/h) the
average event frequency is about one tenth that of rural areas (note: trucks were

restricted at 85km/h). The distributions at rural roads and highways were significantly
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different from the normal distribution. Therefore, a Friedman ANOVA was
performed, which vielded a significant effect on speed limit cluster, »?%(2) = 36.55, p
< .001. Two Wilcoxon signed ranks tests were used for post-hoc comparisons. A
Bonferroni correction was applied, such that the significance was tested against an
alpha o« = .025. The event frequency at urban roads (Mdn = 1.92 events/100km)
proved to be significantly higher than at rural roads (Mdn = 0.48 events/100km), T =
1, p <.001. Also, the event frequency at rural roads was significantly higher than at

highways (Mdn = 0.018 events/100km), T =0, p <.001.

With regard to threshold values, Figure 3.2 shows that a threshold of -3.0m/s? at
rural roads yields approximately the same event frequency as a threshold of -
3.5m/s? at urban roads. Likewise, a threshold of -3.0m/s? at highways yields
approximately the same event frequency as -5.0m/s? at urban roads, and -4.5m/s?

to -4.0m/s? at rural roads.

The above approach has also been applied to harsh braking events based on
longitudinal jerk (i.e., the first time-derivative of longitudinal acceleration, expressed
in m/s3), where high jerk values provide an indication of the speed with which a harsh
brake is accomplished. Figure 3.3 displays the frequency of harsh braking events per
100km, in which the mean frequency has been weighted according to the distance
travelled by each participant (i.e., the same procedure as with harsh braking based on
longitudinal acceleration). Speed limits found in urban areas (i.e., 30, 50, 70km/h)
show a similar event frequency at the most liberal threshold of longitudinal jerk (i.e.,
-2m/s3). Likewise, clusters are found for speed limits in rural areas (i.e., 60, 80km/h),
and highways (100, 120, 130km/h). The clusters correspond with those found with
harsh braking events based on longitudinal acceleration, see Figure 3.2. However, the
rate at which longitudinal jerk triggers occur is approximately one order of magnitude

lower than the longitudinal acceleration triggers.
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Harsh braking events across speed limits

0.20 Threshold longitudinal jerk
B -4 <Peaklerk <=-2
[ -6 <Peaklerk <=-4
[0 -8 <Peaklerk <=-6
B -10 < PeakJerk <=-8

0.15 O PeaklJerk <=-10

0.101

0.05 1

Mean event frequency (/100km)

T T T T #
50 60 70 80 100 120+
Speed limit (km/h)

0.00-

Figure 3.3 Harsh braking event frequency as function of speed limit and threshold for longitudinal jerk. NOTE: the
longitudinal acceleration throughout each event was smaller than or equal to -2.0m/s2.

3.2.2 Harsh braking based on longitudinal acceleration across drivers

The previous section revealed three speed limit clusters (i.e., urban, rural, highway)
with similar event frequencies. The present section incorporates those clusters when
exploring how often drivers perform harsh braking events, and at which thresholds
harsh braking events occur. Due to relatively low frequency of harsh braking events
based on longitudinal jerk (see Table 3.2), the analysis at the level of individual

participants has been performed only with events based on longitudinal acceleration.

Figures 3.5, 3.6, and 3.7 show event frequencies across drivers for urban, rural, and
highway speed limits, respectively. Cleary, most drivers (but not all) perform harsh
braking manoceuvres, yet the frequency at which they occur varies across drivers.
Currently, the drivers have been ordered based on their event frequency at the most
liberal threshold value (i.e., -3.0m/s?). However, the ordering would change if a more

conservative threshold value had been chosen.
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8.0

Harsh braking events at urban roads
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Threshold longitudinal acceleration

B -3.5 < PeakAcc <=-3.0
B -4.0 < PeakAcc <=-3.5
[]-4.5 < PeakAcc <= -4.0
Bl -5.0 < PeakAcc <= -4.5
O PeakAcc <=-5.0

Figure 3.4 Harsh braking events across drivers within urban areas (speed limits: 30, 50, 70km/h).

Harsh braking events at rural roads
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Figure 3.5 Harsh braking events across drivers within rural areas (speed limits: 60, 80kmy/h).
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Harsh braking events at highways
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Figure 3.6 Harsh braking events across drivers at the highway (speed limits: 100, 120, 130km/h).

In Figures 3.5 to 3.7, the drivers are ordered by event frequency. The ordering was
performed independently for each figure. Consequently, the order of the drivers
differs somewhat across the figures. Nonetheless, the similarity in the overall shapes
of the distribution raises the question of, do drivers who show more events in urban
speed limits also show more events at rural and/or highway speed limits? Therefore,
the correlation was calculated between event frequencies across the speed limit
clusters, once for each of the trigger thresholds that were used previously in Figure
3.2 significant positive correlations were found between each speed limit cluster at
the most liberal trigger threshold (i.e., PeakAcc < -3.0m/s?), see Table 3.3. When the
threshold is set to an increasingly conservative value, the magnitude of the
correlations and their significance declines. This finding is a preliminary indication that
drivers differ in where they perform very harsh braking manoeuvres, at least when
the driving context is operationalized in terms of urban, rural and highway speed

limits.
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Location Threshold longitudinal acceleration (m/s2?)
PeakAcc <-3.0 PeakAcc<-3.5 PeakAcc <-4.0 PeakAcc <-4.5 PeakAcc <-5.0
u R H u R H Uu R H U R H u R H
Urban 1 68 &7 1 B Bg* 1 -15  46% 1 25 3B 1 -09 .18
Rural o] I3 o] 39 1 -10 . 1 -15 o] -13
Highway . . 1 S 1 S 1 S 1 S 1

Nore: U= Urban, R =Rural, H=Highway. *p <.05, **p <.01.

Table 3.3 Pearson correlation on event frequency between speed limit clusters, stratified across trigger thresholds.

Summed over all records, the median number of intersections that drivers passed
was 7286 (minimum: 313, maximum: 58163). According to Table 3.2, on average
approximately 23% of the harsh braking events took place at an intersection (urban:
25%, rural: 20%, highway: 15%), regardless of whether the trigger was based on
longitudinal acceleration or jerk. Using the former measure, Figure 3.7 displays the
frequency of harsh braking events taking place at an intersection, expressed as
proportion of the total number of intersections passed by each driver. At the most
liberal threshold, most drivers perform between 0.5 and 15 harsh braking
manoeuvres every 1000 intersections. One driver performed 4 manoeuvres every
1000 intersections. However, this driver did not show the highest event frequency
when the most conservative threshold was used. In other words, when ordering
drivers based on event frequency, the order strongly depends on the threshold that
is chosen. This was also the case when the event frequency was expressed as

function of distance.

MeBeSafe 1

RN

(®)



Deliverable 4.1

Harsh braking events at urban intersections
04

Threshold longitudinal acceleration
B -3.5 < PeakAcc <=-3.0
B -4.0 < PeakAcc <=-3.5
[]-4.5 < PeakAcc <= -4.0
Bl -5.0 < PeakAcc <= -4.5
034 O PeakAcc <=-5.0

0.2

| ...Mmmllﬂ

Driver

Event frequency (% urban intersections)

Figure 3.7 Harsh braking events (longitudinal acceleration) across drivers at intersections.
3.2.3 Speeding behaviour

We focus at speed limits of 80km/h or less, because the trucks were equipped with
a speed limiter. Looking at both Volvo FM and Volvo FL drivers, no moderate, severe,
or extreme speeding events were found. In contrast, 38051 light speeding events
were found, in which the driving speed was up to 10% above the posted speed limit.
The light speeding events had an average duration of 39.0s (minimum: 15.1, maximum:
1169.6, SD = 36.9), and the average distance covered in those events was 728.5m
(minimum: 131.3, maximum: 26459.0, SD=852.9). For each driver, the distance driven
while speeding in a certain speed limit category was divided by the total distance
driven in that speed limit category (regardless of speeding). The resulting proportion
was averaged across the participants, where the weight of each participant in the
calculation was inversely proportional to the distance covered by each participant.
Figure 3.8 shows that the driving speed in areas with a speed limit of 30km/h is too
high (i.e., speed range 30<v <33km/h) in 29% of the distance that was covered. At a
limit of 80km/h, the proportion of speeding (i.e., speed range 80<v <88km/h) has

decreased to 139% of the distance.
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Light speeding events across speed limits
30

251

201

151

101

Mean proportional distance (%)

30 50 60 70 80 100 120+
Speed limit (km/h)

Figure 3.8 Light speeding events as function of speed limit.

Although it is technically speeding, in the Netherlands (i.e., where the data were
collected) no fines are given when the driving speed is less than 7km/h above the
speed limit, given that the speed limit is below 100km/h. Within the light speeding
category, only speeding events at a speed limit of 8Ckm/h could in theory exceed the
fine threshold of 7km/h. An evaluation of a selection of the records indicates that the
Volvo FM and Volvo FL trucks were capped at 85km/h. Thus, it appears that
participants often sought to push the boundaries of maximum speed choice, but it is
unlikely that small violations of the speed limit could have resulted in a fine. Due to

the latter, no further analysis has been performed at the level of individual drivers.
3.2.4 Relation between triggers

This section examines the co-occurrence of harsh braking events and light speeding
events. The examination of light speeding events involves only Volvo FM trucks (N =
16690 events), because a harsh braking trigger could not be constructed for Volvo

FL trucks.
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Of the 139 events with longitudinal jerk, 74 events appear in records that also have
an event with longitudinal acceleration, 66 of which appear within 1.0s of the start or
end of a longitudinal acceleration event (i.e., 47% of all events). This finding suggests
that harsh braking events based on longitudinal jerk are not independent from events

based on longitudinal acceleration.

Of the 2031 events with longitudinal acceleration, 1139 appear in records that also
have one or mare light speeding events. Of these 1139 events, 69 events overlap with
a light speeding event, and another 76 events appear within 5.0s following a light
speeding event. When combined, this accounts for 7% of all events with longitudinal
acceleration; a finding which suggests that harsh braking events occur independent

of light speeding events.
3.2.5 Relation between attitude, personality, and harsh braking

The questionnaires on attitudes and personality have not been used on Dutch truck
driversin previous studies. Therefore, a reliability analysis using Cronbach’s alpha was
performed on the sub-scales of each of the questionnaires. Items with a negative
corrected item-total correlation were removed. After removal, sub-scales with a
Cronbach’'s alpha >0.6 have been cselected for further analysis, these being:
DAQ_Speeding, DAQ_Close_Following, DBQO_Errors, DSQ_Speeding, TLOC_Self,
TLOC_Others, and AISS_Intensity. The descriptive statistics in Table 3.4 indicate that
many drivers believed it was acceptable to engage in speeding, that they did not often
commit errors, and that the cause of accidents was generally other drivers, as

opposed to themselves,
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Questionnaire Sub-scale Likert scale M SD Number  Cronbach’s
range of items alpha
DAQ Speeding 5 2.78 49 8 66
DAQ Close following 5 2.44 50 10 73
DBO Errors 6 1.61 43 8 .78
DSO Speeding 6 2.36 .86 3 .68
TLOC Self 5 174 49 5 7
TLOC QOther drivers 5 314 65 6 76
AlISS Intensity 4 2.08 44 7 69

Table 3.4 Means of the selected sub-scales (Cronbach's Alpha>0.6) after removal of items with a corrected item-
total correlation below zero.

The correlations between the participants’ attitudes and personalities on the selected
sub-scales, as well as participant age, are depicted in Table 3.5. In regards to the
relation between the sub-scales, the strongest significant relationships were found
between DAQ_Speeding and DAQ_Close_Following (r = K1), and between
DBQ_Errors and TLOC_Self (r = 51), closely followed by the relations between
DAQ_Close_Following and TLOC_Others (r = .47) and between DSQ_Speeding and
AISS_Intensity (r = .47). With regard to sample characteristics, the only significant

relation was between age and AISS_Intensity (r=-.41).
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Sub-scale 1 2 3 4 5 6 7 8
1 DAQ Speeding T B 082 437 31 -32* 23 -022
2 DAQ Following 1 15 21 33 ~47F 20 -021
3 DBQ Errors 1 24 BT -12 T4 -021
4 DSQ Speeding 1 L5 -078 LT -221
5 TLOC Self 1 -076 427 -2
6 TLOC Others 1 -15 -2
7 AISS Intensity 1 ~ 40
8 Age 1

NOTE: * p<.05, ** p<.01.

Table 3.5 Pearson correlations between attitudes, personality, and age.

A linear multiple regression analysis was performed on Volvo FM drivers (N = 24),
with the selected sub-scales and age as predictors, and harsh braking frequency as
dependent variable. The lowest threshold was used for harsh braking frequency. At
this value (-3.0m/s?) the significant positive correlations between each speed limit
cluster (see Table 3.3) indicates that the clusters can be grouped into one factor.
Thus, the overall harsh braking frequency per participant was calculated by summing
the clusters. Next, a stepwise regression procedure was used with backward

elimination of the predictors.

The variance in harsh braking frequency was significantly explained by a model with
DSQ_Speeding and AISS_Intensity as predictors, F(2,23) = 438, p < .05, R? =.29. In
this model, an increase in AISS_Intensity corresponds with a significant increase in
harsh braking frequency, gw = .65, t(21) = 2.86, p < .01. In contrast, an increase in
DSQ_Speeding corresponds with a significant decrease in harsh braking frequency, 4
std = .52, t(21) =-2.28, p < .05. The remaining sub-scales, as well as driver age, were

excluded from the model as part of the backward elimination procedure.

It was expected that a positive attitude towards speeding would have been associated

with a higher harsh braking frequency, but instead an association was found with a
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decreased harsh braking frequency. This raises the question to what extent the self-
reported attitude toward speeding is valid for predicting actual speeding behaviour.
For this reason, the relation between DSQ_Speeding (i.e., attitude) and light speeding
(i.e., actual behaviour) was examined for Volvo FM drivers. The total speeding distance
was summed for roads with speed limits between 30km/h and 8Ckm/h. Higher speed
limits have been omitted, because a speed limiter prevented driving faster than

85km/h.

A linear regression model with DSQ_Speeding as predictor and the proportional
speeding distance as dependent variable proved to be significant, although the total
variance explained by the predictor was limited, F(1.23) = 4.37, p < .05, R? = 17.
According to the model, an increase in DSQ_Speeding corresponds with a significant
increase in actual speeding, Asw = .41, t(22) = 2.09, p < .05. We discuss the apparent
paradox between DSQ_Speeding, actual speeding, and harsh braking frequency in the

next section.
3.3 Discussion

The primary aim of this study was to explore the impact of trigger threshold values
on the frequency of unsafe driving behaviour across driving contexts. A secondary
aim was to relate age, personality, and attitudes on driving styles to actual driving
behaviour. These aims are discussed separately, followed by a reflection on the

limitations of the present study.
3.3.1 Trigger thresholds for harsh braking and speeding

Maost truck drivers in the UDRIVE database have been found to perform harsh braking
manoeuvres, yet the event frequency varies across drivers. When drivers are ordered
according to their harsh braking event frequency, the ordering changes when the
trigger threshold is shifted from a liberal to a more conservative value. The

implication of this finding with regard to driver coaching is that the interpretation of
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individual driver performance compared to fleet performance depends on the

threshold that is chosen to identify harsh braking events.

With regard to driving context, it was found that the momentary speed limit
significantly influenced the frequency of harsh braking events. At urban roads (speed
limits: 30, 50, and 70km/h) the event frequency was approximately twice as high
compared to rural roads (speed limits: 60 and 80km/h). In turn, the event frequency
at rural roads was approximately ten times higher than events found at highways

(speed limits: 100, 120, and 130km/h).

The differences in event frequency across speed limits may be explained by the fact
that highways and rural roads, due to their absence of pedestrians and cyclists, are
generally more predictable than urban roads. In addition, highways generally feature
intersections where traffic merges in the same driving direction, whereas rural roads
more often feature crossing traffic. A survey of the event video data showed that
harsh braking events often take place in front of a traffic light. Thus, one would expect
more events at intersections at rural roads. Indeed, the proportion of events at
intersections was higher at rural roads (i.c., 20%) than at highways (i.c., 159%), but the
difference is modest, and it has not been tested on significance. A larger difference
may have occurred, though, when the trajectory directly preceding a traffic light
would have been included (i.e., when approaching a queue). Additional analysis is

required to explore this hypothesis.

Differences across drivers in event frequency as a function of trigger threshold are
a preliminary indication of distinct driving styles. Some drivers perform many harsh
braking events, but the magnitude of deceleration in each event is modest (e.g., above
-3.5m/s?). Other drivers perform relatively few harsh braking events, but for those
drivers the magnitude of deceleration is much larger (e.g. below -5.0m/s?).
Furthermore, drivers appear to differ in where they perform the harshest of braking
manoeuvres. When the threshold for lateral acceleration was set at a liberal value

(i.c., -3.0m/s?), it was found that drivers with a high event frequency at urban roads
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also had a high event frequency at rural roads and highways. At mare conservative
threshold values, however, the following relation dissolved: drivers who perform
their harshest braking events at urban roads are different drivers that those who
perform them at rural roads or highways. Additional analyses and theory are required

to explore how driving styles can be operationalized and validated.

Speeding was the second category of unsafe driving behaviour that has been
investigated. Four categories of speeding have been constructed, based on the
proportion of driving speed in excess of the momentary speed limit: light (0-10%),
medium (11-15%), severe (16-20%), and extreme (>21%). In total, 38051 speeding
events have been found, all of which corresponded with light speeding, but none of
which showed driving speeds that could have resulted in a speeding ticket in the

Netherlands, where the data were collected.

In transportation, drivers may be inclined to drive as fast as possible, because time is
money. The consequence of a speeding ticket, however, stretches further than a
maonetary penalty: it may cost professional drivers their job, at least at hauliers with
a relatively strict company policy. The UDRIVE project included only Dutch truck
drivers from four transport companies in the Netherlands. The results based on this
sample suggest that the added value of speeding triggers in driver coaching is limited
from a safety perspective. Additional analysis with companies and drivers from other
nationalities (and consequently, other driving cultures) is required to generalize the

findings beyond the Netherlands.
3.3.2 Relation between age, attitudes, personality and unsafe driving behaviour

The relation between age, attitude, personality, and harsh braking event frequency
was investigated through a linear multiple regression analysis. Variance in harsh
braking was significantly explained by a model with AISS_Intensity (i.e., intensity of
sensory experience) and DSQ_Speeding as predictors. In this model, an increase in
AISS_Intensity results in an increased event frequency, whereas an increase in

DSQ_Speeding results in a decreased event freguency.
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With regard to DSQ_Speeding, it was expected that drivers who reported a positive
attitude toward speeding would show more harsh braking events. However, the
opposite effect was found in the regression model. This raises the question whether
the DSQ_Speeding results are valid for predicting harsh braking events. In terms of
internal consistency, the subscale had a Cronbach alpha of .68. This is an acceptable
value for a subscale with relatively few items (Hair, Black, Anderson and Tatham,
2006), as is the case for DSQ_speeding (ic., 3 items). Furthermore, a separate
regression analysis confirmed that self-reported DSQ_Speeding was congruent with
actual light speeding behaviour. Thus, there is no reason distrust the DSQ_Speeding

results.

A causal relation between speeding and harsh braking events is unlikely, because only
7% of the harsh braking events overlapped with or directly followed light speeding
events. Possibly, drivers have compensated for their relatively high driving speed by
increasing their distance to a lead vehicle, as a result of which they had more time to
anticipate and react to potential hazards (cf. Fuller, 2005; Summala, 1997).
Alternatively, drivers only engaged in light speeding when no other traffic was around.
Additional analysis is necessary to verify whether such compensatory behaviour

indeed took place, for example by evaluating time headway.

Driver age did not show up as significant predictor in the regression model on harsh
braking. Possibly, this was because age was significantly correlated with
AISS_Intensity, where older drivers showed a lower AISS_Intensity score. Another
possibility is that the sample consisted mainly of drivers around 40-50 years old. A
replication of the study with younger drivers could address the latter concern.
However, personal communication with staff at Shell revealed that the age
distribution in UDRIVE was similar to the age distribution of drivers for one of their
Dutch hauliers (M = 47.6 years, minimum: 30, maximum: 68) and for one of their

Norwegian hauliers (M = 49.0 years, SD = 10.0, minimum: 22, maximum: 65).
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Therefore, in the context of MeBeSafe driver age does not appear to be a relevant

parameter for the construction of driver profiles.
3.3.3 Limitations

The main limitation of this study is that the number of harsh braking events was too
large to perform a manual validation on each of them. The purpose of harsh braking
triggers in ND studies is typically to identify (near-) crashes, usually with other road
users in front of the subject vehicle. A subset of the resulting events may turn out to
be false alarms (i.e., unrelated to potential crashes and actual crashes). In the SHRP2
project with instrumented passenger cars, Hankey (2016) reports a longitudinal
acceleration trigger validity of 22% (i.e., the proportion of events that were actual
safety critical events), despite using a threshold value (ic., -6.38m/s?) that was
relatively conservative compared to other ND studies with cars (e.g., -2.94m/s? in
Dotzauer et al,, 2017). In the present study, a large portion of the events has been
removed by selecting only events where the brake pedal was used, so the validity of
the events is expected to be higher than the 22% reported in SHRP2, where no such
filtering was applied. Nonetheless, the analysis could benefit from additional quality
assessment, for example by using automated computer vision. Such an approach
could also help to distinguish between necessary and unnecessary harsh braking,
which has not been part of the present analysis. Moreover, an evaluation of the
validity of the events across speed limits will inform the choice between a fixed

threshold value and a speed-dependent threshold value.

Anather limitation is related to trip distance. Most records in the UDRIVE database
covered a short distance, which potentially reduces the generalizability of the findings
to long-range truck trips. Previous experimental research suggests that long,
rmonotonous trips increase fatigue and reaction time (Ting et al., 2008). In long trips
a relatively large proportion of the distance is typically covered on highways, which,
if reaction time is affected, may increase the number of harsh braking manoeuvres.

However, all harsh braking events in the present study have been found in unique
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records, implying that even records covering a large distance have vielded maximally
one event. Furthermare, the harsh braking event frequency has been stratified across
speed limits, and expressed as proportion of the distance driven. Therefore, a
potential bias introduced by trip distance has been mitigated to the best possible

extent. In the next chapter collecting data on driving context is further explored.
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4 Collecting data on driving behaviour and context based on automated
and video-based situation analysis

4.1 Introduction

In the previous chapters, various methods have been discussed on how to collect data
on driving behaviour, what thresholds to use and to explore using driving context for
driver profiling, based on different data sources. To varying extents, these methods
are able to take into account some information on the situation in which the driver
finds him- or herself when performing a particular type of (safe or unsafe) behaviour.
Taking into account the situation (or context) is important; one could argue that
profiling should ideally consider the driver profile as “the tendency to behave a certain
way in a certain situation or context ", and distinguish meaningfully between different
situations or contexts in which a particular type of behaviour occurs. In other words,

for an ideal driver profile it would be useful to distinguish between, for example:

o drivers braking harshly often because they are tend to be distracted and
therefore have their eyes off the road;

o drivers braking harshly often because they tend to approach intersections with
high velocity;

o drivers braking harshly often because they are prone to close following
(tailgating);

o drivers braking harshly often because they fail to do proper left or right
shoulder checks when turning a corner and therefore sometimes fail to see

bicycles or pedestrians approaching.

Using questionnaires one may ask the driver, for example, to describe whether he/she
is sometimes speeding in urban environments and get some idea about situations and
context in which undesirable behaviour may occur; but then one has to rely on self-
reporting, and one cannot investigate specific situations on a more fine-grained level.
Using in-vehicle sensor (IVMS) data one may look at specific, logged occasions where

the driver is speeding, match simultaneously logged GPS coordinates to a digital map
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and investigate in more detail on which roads and at which times such speeding events

(or harsh braking events or whatever) occur.,

More fine-grained still, naturalistic driving data such as the UDRIVE data allows for
investigating the events in more detail —including looking at outward- and inward-
facing video data logged simultaneously. In that way, one can get a better “picture” of
the "complete situation” in which a particular behaviour (undesirable or not) occurred

— as described in the previous chapter.

This chapter follows up on that approach. In the previous chapter, the analysis was
necessarily limited because it took too much time to visually inspect (with human
eves) all videos associated with all harsh braking events. In the current chapter, we
describe ways of automating that process to a large extent by using Al-based
computer vision algorithms and software. Furthermore, we describe how we will use
that technology to do further analyses on the UDRIVE data and contribute to the
driver and situation profiling task, allowing fine-grained profiles distinguishing

specifically between different relevant situations or contexts.
4.2 Contents of this chapter

Neither UDRIVE data nor MeBeSafe-internal data from actual driving by MeBeSafe
participating drivers have so far become available for the Al-based computer vision
software that we will use in the MeBeSafe project. In the remainder of this chapter,

therefore, we focus on:

o Description of the technology we have developed and what can be done with
It;

o Experiments and demonstrations on third party data illustrating the principles,
as Proof of Concept (PoC);

o Description of the analysis and profiling that will be done once the UDRIVE data
and MeBeSafe-internal data from actual driving by participating MeBeSafe

drivers become available in the near future.
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4.3 Description of technology and PoC demonstrations on third party data

4.3.1 Building a complete picture of the situation: our approach

The goal of our approach is to build up a complete picture of the situation surrounding
a particular type of behaviour (such as a harsh brake). For that we need to integrate
a variety of data sources. Figure 4.7 illustrates this. By using in-vehicle (IVMS) sensor
data we get information on the GPS location, speed, pedal actions, etc. By using map
matching to rich digital map information we know where an event took place, for
example in an urban environment, and/or at an intersection, which may have been

marked as 'dangerous’ due to a previous record of accidents at that place, etc.

Outward-looking camera:
other road users, traffic lights,
traffic signs, visibility

Inward-looking camera:
head pose/gaze estimation,
eyes open/closed

Vehicle/app sensor data: GPS
position, speed, acceleraction,
(driver actions, fuel, ...)

Map: type of road,
(dangerous?) intersection,
speed limit, ...

© Pedestrian
Dca’ E.g.:
( e * tokm/h speed limit “dangerous”
“com w ete Tralectory, intersection without traffic light
T P Going straight on intersection
Dicture” 5"+ speeding: 68 kmjh
pIC € ® o one peeding: m/

‘ S Elements Bicycle crossing in front of vehicle
Eyes on the road

Harsh brake: unnecessary

e o o o o

Driver behavior/situation context
=> input for coaching

Figure 4.1 Building up a complete picture of the situation surrounding a particular type of behaviour by integrating a
varfety of data sources; including outward-looking and inward-facing camera data which capture information which
cannot otherwise be captured. Video source: YouTube and public UDRIVE data.

However, only by incorporating data from outward-facing cameras (or, to a lesser
extent, radar) can we get information on the outside traffic situation: whether there
was, for example, a bicycle suddenly crossing in front of the vehicle, requiring the

driver to brake.
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Furthermore, only by incorporating data from inward-facing cameras (or an eye
tracking device) can we get information on the particular driver situation: whether
he/she appeared to have his/her eyes on the road (which is indicative of paying
attention to the traffic situation), or perhaps appeared to be distracted by a cell phone
or something else; and/or whether he/she did a proper right or left shoulder check

before making a turn.

In the next sections, we describe our technology for automatic Al-driven analysis of

these types of outward and inward-facing camera data.
4.3.2 Off-the-shelf commercial technology versus in-house, open technology

It should be noted that some of the functionality described here could be acquired
off-the-shelf, using commercially available systems. For example, MobilEye devices
can be acquired and used as outward-facing cameras, giving information on detected
road users. Seeing Machines sells smart cameras for the automotive industries which
can be used as inward-facing cameras, giving information on head pose and eye gaze
and eye closure. However, there are multiple reasons to develop and use our own,

in-house developed technology:

o Cost: Commercially available systems are very expensive, especially if the
licensing conditions must allow the type of large scale use and analysis
capabilities we require in the MeBeSafe project

o Closed systems vs. open systems: Commercially available systems are
virtually always very closed, in that they do not allow deep access to the type
of raw’, semi-processed data which we in the MeBeSafe project require for our
analyses. For example, a Mobil Eye device can output a certain amount of
object data with position information, but not more underlying and more fine-
grained data (including, for example, more specific image and other data
available for individual road users which we intend to exploit in our analysis and

profiling).
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o Flexibility: In the MeBeSafe project, we will carry out custom server-based

analysis using the Al technology on naturalistic driving (UDRIVE) data, using
custom interfaces to the databases and custom outputs. Furthermore, we
intend to use the same technology on data (including outward- and inward-
facing video) acquired for (a subset of) MeBeSafe drivers, coupling to coaching
app software using additional custom interfaces. Commercially available
systems are designed for one or two specific, pre-designed use cases, and do
not legally and technically allow for this type of flexibility. For example, a
MabilEye device or Seeing Machines device can be used in a vehicle, but cannot
be adapted to do server-based analyses.

o Adaptability: In the MeBeSafe project, we adapt core technology (e.g. for object
detection, tracking, gaze and eve closure detection, etc.) for our particular
purposes, for example for a specific type of trajectory analysis or for a specific
type of eyes-off-target analysis; requiring deep access to the code. This type
of access and adaptability is not available for commercially available systems.

o State of the art: Artificial Intelligence (Al) and in particular deep-learning based
vision algorithms have been and are still making tremendous progress, each
year, in terms of general capabilities, accuracy, speed of processing, and
robustness. The same holds for the software and hardware used to implement
those algorithms. Commercially available systems, due to their production,
testing and sales cycles, necessarily lag behind compared to state of the art.
Within MeBeSafe, due to its research and innovation nature and the available
expertise within the consortium, we are able to use and exploit more recent

innovations.
4.3.3 Outward-facing camera-based road user detection

For a much more automatic (compared to using human eyes) analysis and profiling
using outward-facing camera video data as additional situation information, we use an

approach based on modern Al-driven computer vision. In particular, we use modern
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deep learning-based object detection algorithms (cf. Sermanet et al., 2014; Girshick,
Donahue, Darrel, & Malik, 2014; Girshick, 2015; Ren, He, Girshick, & Sun, 2017, Redmon,
Divvala, Girshick, & Farhadi, 2016; Redmon & Farhadi, 2017) which are able to detect,
in images, what type of objects are in the image, and where in the image they are
located. In Figure 4.2, for example, different object classes (road user types as well
as other relevant objects such as traffic lights) are identified by different colours,
labels indicating the class, and bounding boxes indicating the size and position in the

image.
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Figure 4.2 Deep learning-based road user detection in an image. Note the accurate identification of road user class
(such as car vs. bicycle vs. person), and the accurate localization in the image. Video source: YouTube.

Specifically, we use YOLOv2 (cf. Redmon & Farhadi, 2017). YOLO (*You Only Look
Once”, Redmon et al, 2016) and YOLOv2 (Redmon & Farhadi, 2017) distinguish
themselves from mast other approaches by not having a separate, serialized process
in which candidate object ‘region proposals” are determined and examined
sequentially (a time-consuming process). Instead, they use a single regression
process (hence, You Only Look Once) in which possible object regions and
classifications and bounding boxes are predicted and learned in one sweep, in parallel.

This makes it a very fast during model application (‘inference”), while at the same time
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maintaining high accuracy and robustness. Experiments on third party data with our

implementation confirm this.

We use a fine-tuned and adapted version of the algorithm that is particularly suitable
for road user detection and tracking under challenging visibility conditions. That is, we
use particular training data and categorization (MS COCO, Lin et al. 2014, with certain
categories discarded or merged for our outside traffic estimation application); and we
have adapted the method to include a novel technique of extracting data from the

deep network which is very suitable for tracking (see below).

Figure 4.3 lllustrations of how our computer vision object detection algorithm is robust even with sudden light
changes (going from a bright outdoor environment into a tunnel), under bad weather conditions which significantly
impair visibility (snow and fog), at night when it is dark and vehicles use possibly bright headlights, and even with
the type of low-resolution black and white images that can be obtained using nightvision cameras and which may
be used in very dark situations. Video source: YouTube.

We have done extensive testing to test accuracy and robustness under various
challenging light, weather, day and night and camera type conditions; to evaluate the
suitability for further use on UDRIVE data and MeBeSafe data. Figure 4.3 illustrates

robustness under such difficult conditions.
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4.3.4 Tracking road users detected outside the vehicle

Tracking is the process of following the individual detected road users over time (their
trajectories); ideally even when there are large appearance changes and occlusions
which make such tracking difficult. In particular, we need multi-object (or mult-target)
tracking (e.g. Reid, 1979; Leal-Taixe, Milan, Reid, Roth, & Schindler, 2015). This process
is done such that a spatio-temporal representation can be obtained of the trajectories
of the multiple other road users around our driver—which describes the traffic
situation around our driver. In other words, without such trajectories obtained by
tracking, we cannot properly identify what is really going on around our driver,
whether certain other road users are on a potential collision course with our driver,

etc.

To do tracking in our application, we use a method inspired by a relatively new but
existing method (Wojke, Bewly, & Paulus, 2017), but adapted now for the first time (as
far as we know) to our particular object detection algorithm. This method is a so-
called “tracking by detection” method: that is, a tracking method which relies heavily
on accurate detections (which we have) from a state of the art object detection

algorithm; and so-called “appearance feature vectors” derived from those detections.

Those appearance feature vectors act as a kind of “fingerprint”. They should remain
relatively constant for subsequent detections of the same aobject over time in
different image frames (e.g. the same red Fiat); while distinguishing clearly between
different instances of the same object class (e.g. a red Fiat and a grey Toyota). In this
way, by storing past appearance vectors for different "active” tracks, and comparing
newly detected appearance vectors to stored vectors, we can solve the so-called

association problem and assign new detections to existing active (or new) tracks.

This can work even when objects tempaorarily disappear from view either partially or
fully; or when their appearance changes drastically, for example when a car or bicycle
comes closer or makes a turn, or a pedestrian changes its body pose. This is possible

because the storage of past appearance vectors acts like a short-term memaory
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(allowing the system to pick up a previously lost track when an object reappears with
a familiar appearance vector); and new appearance vectors belonging to a single track
(single object instance) can be added which reflect appearance changes over multiple

image frames.

For example, in our application of tracking multiple road users, our object detection
algorithms may detect multiple instances of cars in one image, as well as multiple
cyclists, and multiple pedestrians. For each of the cars, an appearance vector is
extracted (process to be described shortly). This appearance vector captures certain
information which allows the system to distinguish one particular car detection (e.g.
a red Fiat) from another (e.g. a grey Toyota). Over time, when new image frames are
detected and analysed, multiple car detections and their appearance vectors are again
analysed and if the red Fiat and grey Toyota appear again, they can be matched
("tracked") against their previous detections and locations. New car instances can
appear as well, leading to new tracks; and old tracks can disappear after sufficient
time (e.g. if the red Fiat is not seen for a substantial amount of time).
i

|
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“red Fiat” | car1:[-0.76,0.23, ..., -0.89]

“grey Toyota” | car 2: [0.40, -0.08, ..., 0.34]

Figure 4.4 Schematic illustration of how our method extracts uniquely identifying “appearance feature vectors”
associated with different instances of detections of the same object class “car” (right picture), by taking the
activation vector of a deep layer in the deep neural network (left picture) which constitutes the object detection
system. This allows other modules in the system to track, over time, those (and other) multiple targets.

Figure 4.4 illustrates the process of extracting appearance feature vectors from
detections in images. In our case, our object detection algorithm (YOLOv2) allows for
a very elegant, powerful, and fast production process of appearance feature vectors;

by simply extracting the 1024-size activation vector of a deep layer (layer 29, to be
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precise) of the network corresponding to the object grid cell. This can be done in the
same, single (“only look once”) forward sweep. Figure 4.4 illustrates this process as

well.

Importantly, many previous methods have had difficulties (in terms of making it work
well, or making it work fast enough) with this type of approach with deep learning
systems. This is due to the fact that it is necessary but difficult to strike a balance in
the appearance feature vector production process between, on the one hand, using
‘higher-level’, more semantic, categorical information that is relatively invariant to
appearance changes; and, on the other hand, using ‘lower-level' appearance
information which identifies the particular instance of an object and distinguishes it
from other objects of the same class (‘red Fiat vs. grey Toyota”) and which allows
for precise localization (Danelljan, Hager, Khan, & Felsberg, 2015; Ma et al., 2015;
Want, Ouyang, Wang, & Lu, 2015). Using YOLOvZ2 we are able to solve this dilemma,
and find a good balance between the two, because in certain deeper (‘higher-level’)
layers (including the layer 29 that we extract from) it already uses, in a similar vein
to ResNet systems, short-cut connections from shallower (lower-level’) layers, and

those deeper layers are in fact trained to find such a good balance.

Figure 4.5 lllustration of tracking by our method of pedestrians. The left picture shows the situation and tracking at
a certain time T, the right picture shows the situation, after both object motion and eqo-motion, at a later time T+N.
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Figure 4.5 illustrates the tracking performance of the combined detection and
tracking system, using a third-party dataset (see Leal-Taixe et al., 2015) which focuses
on tracking many instances of a single class of road user, namely pedestrians. In this
figure, colours of the bounding boxes now indicate distinct instances of the object
(pedestrian) being tracked. Note also the ‘trails” or "tails” of the same colour,
connected to the boxes, which indicate the history of previous positions of the same
object in the track. It can be observed (for example, for the man in dark clothes
indicated by red bounding boxes, or the other man indicated by green boxes) that
individual persons are tracked successfully over time, even under significant
appearance changes and temporary occlusions, which are caused both by object

motion (the pedestrians moving) and ego-motion (the camera moving).

4.3.5 Transform to real-world 2D/3D space trajectories, identification of traffic

patterns and situations

For further trajectory analysis, identification and classification of traffic patterns and
situations, the detections and tracks determined in the image space of the outward-
facing video data is “transformed” to the real world 2D/3D space or domain, by using
camera position and relative position and size of road users within the images. This
process is illustrated in Figure 4.6. In a way, this produces a kind of "bird's eye view”

of the situation.
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Transform to real-
world 2D/3D space

Future
Trajectory
i Past
% Trajectory

© scene
o Elements

Figure 4.6 Illustration of the process of transforming detections and tracks obtained in the image domain to
trajectories in a real-world 2D/3D representation which are meaningful with respect to a digital map.

In this process, we integrate with GPS and map data; so that we know where in the
map (e.g. at what intersection) we are, and we obtain spatiotemporal trajectories that
are mapped on the digital map. Within that domain we identify patterns, classes of
situations; e.g. close following followed by harsh brake; left turn on an intersection

with bicycle approaching followed by harsh brake; etc.
4.3.6 Analysing inward-facing camera data to complement the context

The situation or context analysis is made more complete by including information
from inward-facing cameras. As with the ocutward-facing video data, we use modern
Al-driven computer vision (Hansen & Ji, 2011; Czupryski & Strupczewski, 2014; Gudi,
Tasli, den UyL, & Maroulis, 2015; Baltrusaitis, Robinson, & Morency, 2013) to allow for
a more automated analysis (and profiling) process than what is possible when having
to rely on human eves (as was discussed in the previous chapter on the analysis of

UDRIVE data).

This technology allows us to automatically estimate, from video images showing the
face of the driver, head pose and gaze direction, as well as “eyes open” versus “eyes

closed”. Head pose and gaze estimation allows us to estimate, for each point in time
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for which there is driver video data, if the driver is looking at the road or not, and if so,
provide an estimate of where he or she is looking. It also allows us to determine
automatically whether the driver performed right or left shoulder checks before

making a turning or overtaking manoeuvre.

Eyes open versus eyes closed detection provides another way to detect whether the
driver is currently looking at the road and outside traffic or not; and importantly, by
analysing eye closure duration and blink rate we are able to estimate with a
reasonable degree of accuracy drowsiness and microsleeps, which are important
causes of traffic accidents (Ng Boyle, Tippin, Paul & Rizzo, 2008; Horne & Reyner,
2001; Hakkanen, Summala, Partinen, Tiihonen & Silvo, 1999).

4.3.7 Facial landmark and action unit analysis technology

Specifically, we use deep learning-based facial landmark and action unit analysis
algorithms (Gudi et al,, 2015; Baltrusaitis et al., 2013; Jiang, Valstar, & Pantic, 2011) to
determine the head pose, gaze, and eye variables described above. Despite its
sophistication, the entire process takes computation time in the order of milliseconds
on modern computers, allowing for fast and if necessary real-time processing. Figure
4.7 illustrates the results of the analysis process. The technology works by first
detecting the presence (or not) and location of a face within an image, in a manner

quite similar to the object detection technology described in Section 4.3.3.

Next, facial “landmarks” are analysed based on image features and known face
features, placing the eyes, nose, mouth, etc. on the correct positions; effectively
overlaying the image with a flexible ‘mask’ describing the face in numerical terms.

This allows for head pose orientation estimates and initial gaze estimates.
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Figure 4.7 lllustration of how facial landmarks, effectively making up a ‘mask’. are placed on an image, allowing
head pose and expression (action unit) estimates, and how further analysis of the eyes allows for refinement of
gaze estimation. Video source: Cygnify Webcam.

Further analysis of the eyes in the image allows for more precise gaze estimates.
"*Action unit” analysis relies on analysis of relative positions and movements of
detected facial landmarks to detect, for example, smiling, frowning, and also eye

closures (blinks).
4.3.8 Challenging and real-world driver face video data

Figure 4.8 to Figure 4.10 illustrate our experiments to analyse the usability for real-

world driver data and robustness under challenging conditions.

Figure 4.8 illustrates robustness of the analysis on real-world driver video under
difficult light conditions (large light variations, even within one video image, which is
traditionally problematic for computer vision) and large head position and head pose
variations. Figure 4.9 shows robustness when sun glasses are worn; gaze detection
cannot be as precise, but very reasonable estimates can still made based on
landmark analysis and head pose. Figure 4.70 shows the analysing ability of night
vision video, which is useful in particular when analysing video images collected at
night, when normal cameras do not have enough light to work with and inward-facing
cameras based on infrared imaging can and are typically used. Situations of night time

driving are particularly relevant for drowsiness and microsleep detection.
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Figure 4.8 lllustration of robustness under challenging light conditions and large head position and pose variations.
Video source: YouTube.

Figure 4.9 lllustration of robustness when sunglasses are worn. Video source: Cygnify webcam.

Figure 4.10 lllustration of the ability to work with night vision cameras. Video source: YouTube.
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Figure 4.11 Alleviating privacy concerns to some extent: after processing of the image (left), one may discard the
actual image data itself and only use, and store for later, the numerical facial landmark, gaze, and action unit data
(right). Video source: YouTube.

4.3.9 Privacy

Figure 4.17 illustrates a way of alleviating privacy concerns to some extent.
Understandably, many drivers are hesitant to have an inward-facing camera
recording them all the time. This is a genuine concern and one that cannot be solved

completely, by technology or otherwise.

However, technology may help to some extent. Unlike inward-facing camera systems
where human operators (such as supervisors) inspect recorded videos, the
technology allows for a set-up where immediately after processing the camera
image in the vehicle, the video images are discarded, with only the numerical facial

landmark, gaze, and action unit data remaining.

Furthermore, access to the video data could be limited (barring some exceptions,
when there have been multiple dangerous situations, for example) to only the drivers

themselves and to researchers or coaches.

In set-ups where post-hoc analysis and coaching is not even necessary but the aim is
rather to provide real-time warnings for distraction and drowsiness, even those

numerical data could be discarded only seconds after capturing.
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4.3.10 Bringing it all together

We refer back to Figure 4.7 to illustrate how the data from the various pieces of
technology are brought together to obtain a more or less “complete picture” of the

situation or context in which a particular type of behaviour occurs.

Using the outward-facing technology, we are able to estimate automatically
trajectories of other road users in view of the driver. By integrating the trajectories of
other road users with map information, information on GPS position and speed of the
vehicle from IVMS sensors, we are able to place those trajectories on a particular
location (e.g. around an intersection) relative to our driver, estimate potential collision
courses, close following, etc,; i.e., a ‘higher-level’ understanding of the outside driving
context. Furthermore, by integrating gaze estimation and eye closure information we
are able to add even mare context, namely on whether our driver has his or her eyes

on the road, is possibly distracted, does a shoulder check, or is currently drowsy.

All together this offers very rich information about what is going on at a particular
moment when, for example, a harsh braking event occurs, information which can
potentially make feedback and coaching more focused than when such a rich analysis
is not performed. It will be necessary, to “summarize” this rich information in such a
way that coaching and feedback can easily make use of it (see the next sections in

this chapter, as well as Chapter 7).

4.4 Application to naturalistic driving data and MeBeSafe: towards fine-

grained automatic driver/situation profiles

441 Goals

The technology described in Section 4.3 will be applied in this project to naturalistic
driving data (specifically the UDRIVE data, see Chapter 3, and the MeBeSafe data on

driving behaviour to be collected during the project), with the goals of:
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o automating the analysis of that data to a larger extent than what has already
been done (for UDRIVE, which relied on human analysis of video) and what
otherwise can be done when using video within MeBeSafe;

o analysing that large amount of naturalistic data to determine typical patterns
(classes) of situations which should be discerned for coaching in MeBeSafe;

o determining the added value of using outward- and inward-facing video data
for situation analysis and coaching;

o helping to determine thresholds and trigger values for available input data
(IVMS and video-based) which lead to fine-grained, numerical driver profile data
able to distinguish meaningfully between different classes of situations and
driving behaviours, and which provides useful input for the coaching scheme

task of task 4.3 of Work Package 4.

4.4.2 UDRIVE data processing: hardware, software, algorithms, and processing

toward trigger-ready numerical variables

Once the UDRIVE data is available locally at MeBeSafe partner SWOV, we will place a
dedicated High Performance Computing (HPC) GPU-server there, locally, which is
suitable for the type of deep learning-based algorithms described earlier. By placing
the server locally with the database, we will both ensure the highest processing speed
possible (keep in mind we are talking about a very large number of hours of driving
data and video) and ensure that we respect privacy and security regulations (which
require careful handling of sensitive data of drivers, including videos of drivers

showing their faces etc., essentially ruling out cloud-based approaches).

Customized software interfaces will be built connecting the deep learning-based video
analysis software to the database. Then, large portions of the UDRIVE video database
will be processed using this software. The results will be further processed resulting
in such a format that data on specific variables can be stored in the database together
with the other numerical data — similarly as other numerical variables which are

stored per timestamp. Like other variables they can be used as the basis for so-called
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trigger thresholds for identifying particular types of events, as was described and

used in the previous chapter.

This means that subsequently one could, for example, query the database for events
like this: *find all events where the drivers had their eyes off the road for more than
3 seconds”, or “find all events where the driver performed a left shoulder check”, etc.
This will allow for additional questions to be answered, and facilitate and speed up
analyses of events or trips where the relevant situation can only be derived from
video. For example, one can then complete analyses where we look at all harsh
braking events, and ask straightforwardly how many of those were preceded by the
numerical variable stating “eyes off the road” or look at all turn manoceuvres at
intersections, and ask how many of those were accompanied by an appropriate

shoulder check.

However, since the automatic analysis process is not perfect, sanity checks with
human eyes will still be necessary occasionally; but the automatic process can

significantly facilitate and speed up naturalistic driving (including UDRIVE) analyses.
4.4.3 |dentifying typical situations and alignment with the KPI variables

The approach described earlier can then be used to identify typical situations, i.e.
general classes of situations or contexts which should be distinguished for our
context-sensitive driver profiling. In other words, we want context-sensitive driver
profiling to be fine-grained, but not too fine-grained: every particular traffic and driving
scenario or event is unique in its details, but we want to summarize the behaviour and
situations in such a way that we end up with a compact yet meaningful set of profile

output variables.

For this we aim to bring this in line with, and stay close to, the Key Performance

Indicator (KPI) variables identified within WP4:

o Harsh braking

o Harsh cornering
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o Speeding

o Close following

o Distraction

o Drowsiness/Fatigue

o Lane departures

The first three can be derived from the in-vehicle sensor (IVMS) data on GPS positions,
speeds and accelerations available from IVMS systems and smartphones (and
storage thereof in the UDRIVE database and MeBeSafe databases). This was discussed
already in Chapter 2. Close following, distraction, drowsiness/fatigue, and lane
departures however, require camera data and the specific technology described in

this chapter.
4.4.4 Close following

In the UDRIVE database, data from MaobilEye devices is already available, which allows
analysis on close following. However, we will add our own object and relative position
data derived from our outward-facing video analysis software, from which close

following (among other things) can be derived, because:

o it will allow for richer road user (and other relevant traffic situation) data to
be extracted;

o it will have a more direct and neater relationship with the stored video data
(note that the MobilEye camera was actually independent from the UDRIVE
video capture cameras and had a different mounting position, viewing range
and viewing angle);

o we am to use the same video processing technology for analysis of the
UDRIVE data as well as for analysis and profiling of MeBeSafe drivers
participating in the study and equipped with cameras (but who will definitely

not have MobilEye devices on board for our use).
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Using the UDRIVE data, we will calibrate the relative positions data and close following
trigger parameters. That is, we will determine which values of the relative position
variables represent useful criterion values: values beyond which we should classify
driver behaviour as “close following” for the purpose of MeBeSafe profiling and
coaching. These will correspond to the trigger values to extract close following
events from the UDRIVE data, and similarly function as trigger values to detect and
log close following events in MeBeSafe participant driving, for those vehicles equipped

with the necessary technology.
4.45 Distraction and drowsiness/fatigue

Distraction and drowsiness/fatigue are also KPI variables which require cameras,
specifically inward-facing cameras in order to collect data on these behaviours.
Distraction per se is actually only one of the various situations in which the driver has
his or her eyes off the road and off relevant other road users that he or she should
be paying attention to. Thus, it is better to adapt this KPI variable to what we may call
the "Eyes off target” variable.

The "Eves off target” KPI variable can then have two subcategories, each of which can

be detected using our automated technology:

o Distraction (which we operationalise as detecting that eyes are directed at a
smartphone, radio, work papers, colleague; which is an imperfect
operationalisation, but distraction due to, for instance, "daydreaming” cannot
be detected easily);

o Failure to look properly (eyes on the road but, for example, failure to do right

shoulder check before right turn);

Drowsiness/microsleep is a separate main KPI category or variable, and will be
operationalized by measuring when the blink rate is very high or the eyes are closed

for a long duration.
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4.4.6 Lane departures

Lane departures are a final KPI variable for which again cameras are necessary to
determine them. The previous sections have not described the necessary technology
for that, but we will similarly use Al-based computer vision technology to determine

lanes and lane departures; algorithms exist which can perform this task.

45 A driver profiling approach for MeBeSafe that takes into account

situations in a flexible way
4.5.1 Core profile output variables, computed as relative values to baselines

What we end up with as the proposed profiling approach, when making use of the
available technology as described in this and the previous chapters, and which may
vary somewhat between different MeBeSafe driver participants (it is likely that only
a limited subset of the vehicles will be equipped with cameras), is the following. The
MeBeSafe driver profiling approach will consist of profile output variables which

directly link to KPI variables.

Numerical values for each of these seven “dimensions” or “categories” of the profile
should be determined in a relative way, by relating the number of events as detected
by trigger values to either the time that good behaviour was exhibited (e.g. speeding
vs. no speeding) or to the average behaviour exhibited by the peer group (e.g. more
close following or harsh braking than the average of the peer group), or both. In other
words, the values are computed by relating individual driver behaviour and events to

baselines.
4.5.2 Optional variables and refined variables or subcategories

Several of these variables (close following, eyes off target, drowsiness/fatigue, lane
departures) are only possible to investigate with camera equipment (which may not

be present on all or even most vehicles participating in the MeBeSafe coaching). Hence
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they must be optional variables, which may be omitted while still allowing for a

meaningful profile, consisting of harsh braking, harsh cornering, and speeding.

At the other end of the spectrum, if more advanced (camera and video processing)
technology is available, we can add more refinement to the seven main profile output
variables; effectively adding subcategories to the seven main categories. For the eyes
of f target variable we already discussed this in a previous section (Section 4.4.5) with

the subcategories consisting of distraction and failure to look properly.

For the other main categories this can be done as well, sometimes with and
sometimes without the help of cameras and associated technology. For example, we
can distinguish between speeding on urban roads vs. speeding on highways or
provincial roads (cf. Chapter 3)). This does not require cameras but requires map
matching of IVMS GPS data. More sophisticated and requiring the use of cameras, we
can distinguish between harsh braking which can clearly be attributed to another road
user violating traffic rules, in which case the harsh braking event is, in a wavy,
‘necessary” and “good”; and harsh braking which has no such outside cause, and which
therefore may be interpreted as “unnecessary” and "bad”. This would effectively split

the single *harsh braking” variable or category into two.

Similarly, we can distinguish between harsh braking (or harsh cornering) when the
traffic situation is "difficult” versus harsh braking (or harsh cornering) when the
situation is not so difficult. Whether the traffic situation is difficult can be estimated
(imperfectly, but to a reasonable degree) by counting the number of (various) other
road users around the driver and the complexity of their trajectories, combined with
road and intersection information. More coarsely this can be done without any camera
data, by just using map data on roads (urban vs. highway) and intersections, rush hour
time information, and by including mapped data on dangerous (high accident rate)

map locations, which is available for some regions.

In this way, we have a flexible, open-ended, yet meaningful and easily interpretable

driver profiling approach, which can work with the most advanced basic hardware and
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software set-up (including outward- and inward-facing cameras and their associated
technology, as described in this chapter) as well as a more basic hardware and
software set-up (cameras omitted, which is likely to be the case for many of our
MeBeSafe driver participants); and in which we can choose to make refinements in an

iterative, incremental way.

4.5.3 Concurrency analysis and indication of relationships between variables in the

profile data to provide context information

The remarks concerning optional subcategories and refinement lead directly to the
insight that even when we choose to work with these five core KPI and profile output
variables, the variables are not (statistically and causally) independent but in fact are
often correlated. Itis very useful and meaningful to identify these relationships where
possible, in particular for coaching purposes. Thus, it should be possible to express
these relationships in the profiles, if one desires to contextualize the profile data as

much as possible.

For example, it is possible (and even likely) that in situations (events) when there is
close following, there is also (shortly thereafter) harsh braking, because if the car in
front of you that you are tailgating is suddenly braking, you would brake harshly to
prevent a collision. If this type of situation occurs frequently for a certain driver, this
information should ideally become apparent and explicit in the profiling data which is
used in coaching; and not just as having independently high values on both harsh
braking and on close following, which may appear independent and coincidental at

first sight.

This type of relationship could be determined on the level of events and can be
analysed; where we can see that close following occurs together with a harsh braking
event. That is, we can look at concurrency at the event level (which was called “co-
occurrence” in the previous chapter and analysed there to some extent already). If
there is such high concurrency between two variables at the event level, additional

information should be included in the profile data which indicates that concurrency
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relationship (which may well indicate a causal relationship) between those two of the

five core profile output variables (in our example: harsh braking and close following).

This type of analysis is especially relevant given the advanced situation analysis and
context-sensitive profile information we intend to generate using the technology
described in this chapter. After all, it is exactly that type of richer context information
that we wish to add using the technology. Thus, we will do this type of concurrency
analysis extensively on the UDRIVE data, using our technology, to determine realistic
and useful trigger and concurrency correlation thresholds; and apply these during

the driver pilot testing and coaching period.

In the next chapter the added value of measuring driver competences in addition to

driver behaviour and driving context is explored.
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5 Measuring driver competences

When it comes to the coaching of drivers, it can be useful to include a driver
competence model to move beyond the limitations of merely modifying overt
behaviour. A competence approach views behaviour as being caused by a driver’s
underlying competences, such as skills or knowledge, and shifts the focus from pure
behavioural modifications to the improverment of less developed competences. This
approach is commonly used in education where a teacher assesses student's
competences in a specific field, measures them, and compares them to a norm model
that allows to decide whether the student is at a eligible level or whether educational
interventions are needed. Such an approach becomes necessary when the behaviour
of interest is beyond a certain level of complexity: A student who cannot yet add or
subtract numbers can make an infinite number of mistakes and it would be useless
to just modify the behaviour, for example by rehearsing the specific results of
calculations (e.g. 33 + 42 = 75). A more successful approach is to coach the student
on the rules of addition. In this chapter we consider safe driving behaviour in a similar
way by targeting “safe driving competences”. Such an approach should widen the
applicability of driver coaching targeted at behavioural madification and should
increase acceptability of online coaching approaches. Similar trends have already

occurred in the field of electronic tutoring (e.g. Albert & Schrepp, 1999).

The aim of this chapter is to describe a driver competence model and to offer
suggestions on how these competences could be measured. The described work is
intended to give directions for future research and development in order to assess

“driver competences” in a more holistic way.

MeBeSafe deliverable 1.1 (Karlsson et al., 2017) describes in considerable detail the
theoretical considerations of driver characteristics and an integration framework for
nudging and coaching. This deliverable intends to build on deliverable 1.1and to extend
it in relevant aspects. We aim to focus on the practical aspects — what are safe driving

competences? And how can they be measured?
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5.1 Definition of Competence

This section aims to give a clear definition of the term competence in order to

establish a common ground in the understanding of this term.

Competences allow an individual to master variable situations successfully and
responsibly and can be seen as fundamentals for learning. Referring to Reber (1995),
Stanton, Walker, Young, Kazi and Salmon (2007) see competence as a “collection of
knowledge, skills and attitude”, which results in “the ability to perform some task or
to accomplish something" (p. 1210). Lindstrom-Forneri, Tuokko, Garrett and Molnar
(2010) make a clear distinction between competence and performance. The authors
define competence as “a latent construct that refers to what a driver is capable of
given the dynamic individual-environment interaction.” (p. 284) whereas driving
performance ‘refers to the actual driving behaviours” (p. 284). Based on these
definitions, two aspects are important: 1) competence can be seen as a triad of
attitude, knowledge and skills and 2) competence and performance are two distinct
constructs. These aspects are crucial for our formulation of a practical driver

competence model, which will be described in the next section.
5.2 Driver Competence Model

This section will define a driver competence model which describes the relevant
competences for successfully accomplishing the driving task. This section builds on
the theoretical aspects of driver competences described in deliverable 1.1 and aims to

extend it in relevant aspects.
5.2.1 Definition of driver task

The driver task has been described in detail by McKnight and Adams (1970): the
authors identified around 1700 different tasks that a driver needs to complete. Michon
(1985) summarized the driving task in three different levels: strategical, manoeuvring
and operational level respectively. We want to add the description of Hollnagel, Nabo

and Lau (2003), who summarized the driving task as “comprising of planning the
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drive, monitoring one's own car and other traffic, and controlling speed and direction
(comprising steering, accelerating, braking)" (p. 87). The authors propose four
different levels of control during the driving task: tracking, regulating, manitoring and

targeting (see Figure 5.7).

Situation Targeting
assessment

Current —+ Goal/targets

understanding

Anticipatory
control

Information Monitoring

Plans/

Goalftargets objective

Situation H Regulatin
assessment ﬁ

Plans/ ’ Actions/ |
Dhjecti'.re target values
/
Measurements, h Traclqng
feedback \

Actions/ Corrective
target values ™ - e actions

Figure 5.1 Driver in Control Model (Hollnagel & Nabo, 2003).

Compensatory
control

%

The first basic level of control is tracking, where the driver is required to maintain
speed, distance from the car in front or behind and things alike. Hollnagel et al. (2003)
describe tracking as a closed-loop control strategy, which, for experienced drivers,
can be accomplished with little effort and without conscious processing. The level of
regulating forms the goals and target values which will be forwarded to the tracking
level. On this level, target speed, specific position and movement relative to other

traffic elements are of interest. On the level of monitoring, the interaction between
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driver-car-environment (traffic situation, potential hazards, etc.) is constantly
assessed. On this level, plans and objectives used by the subsequent levels are
generated. The status is monitored constantly (car condition, fuel consumption, etc.),
as well as are environmental cues, such as traffic signs, direction indicators, warnings,
etc. The level of targeting is similar to Michon's (1985) strategical level. It is concerned
with higher-level goals (target destination, for example) and is responsible for an
infrequent monitoring-process of the higher-level goals which are stored in and
retrieved from memoary (as for example: recognising that one has driven in the wrong

direction).
5.2.2 Formulation of a driver competence model

Derived from existing literature, we propose a basic driver competence model which
concentrates on the interaction of the driver with the environment and the ability to

adapt to the context, as this is the most prevalent aspect of safe driving behaviour.

Within this regard, we want to highlight the concept of Situational Awareness
(Endsley, 1995), which describes three essential steps in order to perform tasks in a
dynamic environment: 1) to perceive and select the relevant elements in the
environment (what kind of intersection? How many cars are around me? What
aspects of the environment — weather, traffic etc. — do | need to pay attention to?), 2)
to comprehend the meaning of that information (what rules are applicable for this
specific intersection? What does heavy rain, for example, mean for that situation?)
and 3) to project the status of the situation into the near future in order to act

accordingly (given these factors, can | cross the intersection safely?).

The driver in control model by Hollnagel et al. (2003) suggests that the safe handling
of a driving task requires a broad set of competences, all based on the dynamic
interaction of a driver with the environment. This in turn determines the driving
performance (ie. is the driver able to cross the intersection safely or has s/he
interpreted aspects of the situation incorrectly, as for example the speed of an

approaching car?).

MeBeSafe 91

RN

(®)



Deliverable 4.1

The task of driving is accomplished most of the time via subconscious processing of
the environment by the means of fast pattern recognition (see for example Bellet,
Bailly-Asuni, Mayenobe, & Banet, 2009). This automatic processing frees up cognitive
resources and allows for an initiation of fast actions. This automatic processing (the
‘direct path’) is not mentioned in Endsley's (1995) situational awareness model (see
for example Bellet et al., 2009; Kallus, 2009). Bellet et al. (2009) describe this state
as ‘implicit awareness’ about the situation and the activities taken while driving. If a
situation becomes more complex, the driver may switch from automatic,
subconscious monitoring to conscious processing (‘explicit awareness', Bellet et al.,
2009). A key element here is the level of uncertainty. Uncertainty is characterized by
a lack of information, triggering an active search for more information, which is
coupled to more conscious processing (see also: behavioural inhibition system, Gray

& McNaughton, 2003).
Risk Assessment

One crucial aspect of the driving task is the appropriate risk assessment of the current
situation. Although this aspect was briefly mentioned in deliverable 1.1, we want to
further specify this topic as it is highly relevant for our goal to identify, measure and

coach safe driving behaviour.

Risk can be defined as “the projected likelihood and severity of the consequence or
outcome from an existing hazard or situation” (p. 27, International Civil Aviation
Organization, 2013). Following this definition, for an effective risk-assessment,
hazardous driving conditions need to be detected and their likelihood and severity of
the consequences need to be assessed, based on continuous feedback from the
traffic environment. The driving behaviour needs to be adapted accordingly. The
notion of the specific amount of risk thereby leads the actions further taken such as

adjustment of speed, etc. (Harré, 2000; Horswill & McKenna, 2004; Senserrick, 2006).

In regard to the detection of hazardous driving situations, a study from Borowsky,

Shinar, and Oron-Gilad (2010) showed for example, that older and experienced drivers
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were able to anticipate potentially hazardous situations even if their probability was
low and the hazard itself was not salient (e.g. anticipating potential hazards at an T
intersection). Compared to that, younger drivers detected hazardous situations if their
saliency was high and therefore imposed an obvious threat. This suggests that the

ability to anticipate hazards with even low saliency is crucial for safe driving.

Harre (2000) formulated distinctive "risk states” which guide driving behaviour - if a
driver perceives a situation as risky, s/he will drive mare carefully; on the other hand,
it in a situation risk is assessed as low, the driver might adopt a more risky driving
behaviour. Harré (2000) proposes to distinguish between deliberate risk-taking vs.
failure to detect a risky situation. This differentiated understanding of risk perception
subsequently calls for different intervention strategies. The study describes these
“risk states” in relation to adolescent drivers but we believe that this description may
also generalize at least to some extent to adult drivers with a relatively higher level
of expertise. Harré (2000) postulates five distinct risk states that describe the

judgement of the driver:

1) habitual, cautious driving: the driver perceives a low crash-risk. Objectively
a low crash-risk is also present
2) active avoidance: the person perceives a relatively high level of risk but

objectively a low level of risk is present

The states of habitual, cautious driving and active avoidance (depicted in the upper
quadrant of Figure 5.2) are desirable from a safety point of view. The states of
reduced risk perception, acceptance of risk as a cost and risk seeking (as depicted in
the lower quadrant of Figure 5.2 "Risk states" after Harré (2000). Indication of
subjective value of perceived crash-risk, negative (-) and positive (+).) are related to
an objectively high crash-risk and are therefore not desirable from a safety paint of

View:

3) reduced risk perception: perceived low crash risk with an objectively high

crash-risk. The proposed intervention according to Harré (2000) is driver
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training in order to increase awareness of hazardous behaviours and
conditions. Reduced risk perception can be seen as a temporary state, for
example when a driver is distracted. A suitable intervention in this case
would be to educate the driver about the effects of distracting conditions.
acceptance of risk as a cost: perceived high crash-risk with an objectively
high crash-risk. Perceived risk (cost) is outweighed by perceived gain and
risk is accepted in order to achieve a goal. Interventions could consist of
identifying and refining the "goals” which lead to higher risk acceptance
within the coaching session. For example one goal could be to arrive on
time while at the same time the fulfilment of concurrent goals are expected
by the driver, such as loading and unloading or filling out paper work.

risk seeking: one step further, abjective crash-risk is even higher and the
driver is actively seeking the risk. Harré (2000) sees this closely related to
the concept of sensation seeking (cf. Zuckerman, 1971, 1979; see Harre,
2000). The aspect of being able to “perform skilful” driving behaviour
seems to be one of the relevant factors (Harré, 2000). Harré (2000) sees

this type of driving as “the most difficult state to shift” (p. 218).
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Objective
crash-risk low

Habitual, cautious Active risk avoidance

driving )
perceived perceived
crash-risk crash-risk
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perception

acost (-]

Risk seeking (+)

Objective
crash-risk
high

Figure 5.2 "Risk states” after Harreé (2000). Indication of subjective value of perceived crash-risk, negative (-) and
positive (+).

Horswill and McKenna (2004) argue that the perception of specific hazards itself is
one specific skill that correlates with a driver's accident record. Senserrick (2006)
provides a simple conceptual diagram (see Figure 5.3), depicting the sequence
between hazard perception and crash avoidance actions and comparing three
different “types” of drivers: a) experienced driver — unimpaired, b) experienced driver
— distracted and c) inexperienced driver — unimpaired. The experienced driver scans
the environment, detects a hazard and then several cognitive processes are engaged.
The driver has to recognize the situation as a hazard which needs to be acted upon.
S/he then needs to decide which response might be suitable and then to execute this
specific action in order to avoid a crash. This overall process takes about two seconds
to complete. A distracted but experienced driver (e.g. who is talking on the cell phone)
detects the hazard maybe 0.5 seconds later than an undistracted driver and has
therefore not enough time to respond accordingly. An unexperienced driver scans the
environment not as efficiently as experienced drivers and therefore may also not

have enough time to respond to the hazard accordingly. Senserrick (2006) therefore
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mentions two distinct factors: ineffective scanning (and therefore delayed hazard

perception) and distraction, or attention allocation (regulation).

Hazard Hazard Decision to Response  Last mament to
detected recognized respond chosen avoid crash
—> Scanning Processing | Processing | Decision making | Action} -:';
2 seconds

Diagram 1. Experienced driver - unimpaired
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Diagram 2. Experienced driver - distracted

Hazard Hazard Decision to Last moment to
detected recognized  respond avaid crach
Scanning Processing Processing Decision making 23
1.75 seconds

Diagram 3. Inexperienced driver - unimpaired

Figure 5.3 Conceptual diagram of hazard perception among three groups of drivers (after Senserrick, 2006,).
Regulation (Attention)

The competence to regulate one's own attention is a crucial competence for driving.
Inattention is defined as the "mismatch between the current allocation of resources
and that demanded by activities critical for safe driving” (Engstrom et al., 2013, p.17).
As described by Sollins, Chen, Reinerman-Jones and Tarr (2014), distractors are a
major accident risk. The National Highway Traffic Safety Administration (2016)
reported that in the year of 2014, 10% of fatal crashes and 18% of injury crashes are

related to driver distractions within The United States. Distractors can be external (e.g.
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passengers), self-generated (e.g. talking on the phone or eating while driving) or

internal (e.g. rumination; Keating & Halpernfelsher, 2008).
Self-Appraisal

Self-Appraisal consists of the driver perceiving and validating his/her own driving
capabilities. Depending on that assessment, drivers adjust their driving behaviour
accordingly to the specific situation. As mentioned by for example Oxley, Fildes,
Corben and Langford (2006), elderly drivers who are aware of their age-related
limitations tend to adjust their driving behaviour for example by driving more slowly
and carefully, avoiding difficult conditions, and reducing night driving. Interviews with
stakeholders highlight factors such as ‘normalization of risk’ (as reported in
deliverable 1.1): with increasing level of expertise, drivers tend to adjust their risk level
as well such that speed for example is increased as relatively high level of expertise

"allows" for that (see Karlsson et al., 2017).

As was also mentioned by Michon (1985), the competence of correct self-appraisal
extends to the self-appraisal of one’s own current state and one's own ability to drive
in the presence of mediating factors which can have a detrimental influence on the

driving performance, as for example fatigue and drowsiness, alcohol use, etc.
Driver competence model

Based on the literature described, we propose a basic driver competence model,
which is depicted in Figure 5.4. Central here is the close interaction between driver,
environment and vehicle (as the type of vehicle also influences driving actions). The
driver her/himself has a set of competences, whereby the ability to adapt to changing
driving situations can be seen as central. Following the definition of competence, we
propose to specify competence in regard to these three aspects: attitude, knowledge

and skills. This further specification will be done in the following section.

Additionally, factors, such as fatigue, stress etc. can moderate to which extent specific

competences might be applied. For example, an in general safe and careful driver
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might show a very different driving style when under time pressure - the general

competence of safe driving is significantly moderated by the factor time pressure.

Environment D C Vehicle

Driver
Risk-Assessment Self-Appraisal
Adaptability
Regulation
Moderators
Fatigue
Stress, Time Pressure
Drug use, etc..
Driving
Performance

Figure 5.4 Basic driver competence model.
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5.2.3 Specification of Driver Competences

Based on the competence model described in the previous section, this section will

take the next step and define the specifics of driver competences concerning the three

components of competence: attitude, knowledge and skills (see Table 5.7). With this

approach, a very detailed picture of driving related competences is given. It combines

observable behaviour (skills level) with more underlying components (attitude and

knowledge).
Competence Attitude Knowledge Skills
Risk-Assessment Beliefs/attitude o Knowledge about Scanning patterns,
towards risk hazardous/risky monitoring
related to driving situations (based strategy

Regulation

Self-Appraisal

(e.g. acceptance of
risk, risk seeking, or
cautious driver)
Beliefs/attitude
about importance
of safe driving
actions (shoulder
checks, etc.)
Beliefs/attitude o
about importance
of attention for the
task at hand

Adequate o
Beliefs/assessment
about one's own o
skills and

connection to risk
assessment
(‘normalization of

risk’)

Beliefs about

interplay between

risk and current

state of the driver

on past experience
or theoretical
knowledge to a
lesser extend)

Knowledge about
level of effort to
apply concerning
regulation
Knowledge about
danger of
distractors while
driving
Knowledge about
one's own skills
Knowledge about
influencing factors
on driving
performance (as
for example
fatigue)

Ability to detect
hazardous driving
situations
Compliance to
safety margins;
safe driving
behaviour

Ability to allocate
sufficient attention
to driving task
(active
suppression of
non-relevant
information)

Ability to
recognize fatigue
or drowsiness
Ability to assess
one's own skills
adequately

Table 5.1 Definition of driver competences.
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5.3 Profiling Requirements

In order to be able to assess the competences that a driver has, it is central to
measure a broad set of variables. Figure 5.5 gives an overview of how to derive these
from observable driver behaviour (harsh braking, speeding, etc. — as discussed in the
sections above) to the underlying competences. It is crucial to set the observable
driving behaviour in context and in addition to also measure underlying attitudes,

knowledge and skills.

measurement of observable behavior:
harsh braking, speeding, harsh cornering, close
following, eyes off road, etc.

== context

+ underlying attitudes,
knowledge, skills

Assessment of competences

Figure 5.5 From observable behaviour to the assessment of driver competences.

For example, data could show that a driver was speeding at a specific point of time.
This would be the observable behaviour, which can be measured via a cell phone or

IVMS (see Chapter 2). The question would be, in which context the driver showed this
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kind of behaviour. Within this scenario, the driver was driving by a school at 50km/h
while 30 km/h would be the appropriate speed. The driver was not slowing down
while passing the school - the question would be, why s/he was not slowing down?
There would be three possibilities: 1) the driver did not recognize that s/he was driving
by a school (one possibility, because of distraction; skills level), or 2) the driver might
not have the knowledge of the risk passing a school would impose, or lastly, 3) the
driver might be well aware of the risk but accepts it anyway, because it serves a

higher goal, as for example to arrive in time (attitude level).

For the measurement of the specific aspects of driver competences, measurements
on varying levels can be conducted. This provides a possibility to structure the
assessment of competences and subsequently the appropriate coaching strategy
more accurately. One main advantage is that with this approach we do not rely solely
on questionnaires, but rather combine a set of measurements, which allows
assessing a broader picture of “driving competence”. With the described model it is
the intention to motivate future research and development in this direction. Although,
it needs to be acknowledged that within the MeBeSafe project, the driver profiling will
be concentrated on the assessment of observable behaviour (harsh breaking,

speeding, etc.), as this is feasible in a naturalistic context.
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Measurement of

Competence Attitude Knowledge Skills
Risk-Assessment o survey on o survey on o hazard
attitude knowledge about perception test
towards risky situations with o monitoring
situations (e.g. high risk strategy (eve-
DSI, DAQ) tracking)

o survey on
beliefs about
importance of
safe driving
actions (e.g.
shoulder
check)

Table 5.2 Specification measurement in regard to “risk-assessment”.

A short questionnaire on attitude towards risky situations can provide information

about the beliefs that a driver has regarding risk related to driving. Questions like:

- "How acceptable is a certain level of risk for the driver?”
- "Which factors would influence acceptance of risk?" — as for example time

pressure: “To what extend does time pressure influence the driver?”

could guide the formulation of items. Also, existing questionnaires as for example the
Driver Skill Inventory (DSI) (here: the balance within the self-assessment between
manoeuvring and safety-skills as this might reflect the driver’s attitude to safety;
Lajunen, Corry, Summala, & Hartley, 1998; Lajunen & Summala, 1995) or the Driver
Attitude Questionnaire (DAQ, (Parker, Stradling, & Manstead, 1996) could be suitable
to assess a drivers attitude towards risk related to driving. It would be desirable to
distinguish between the specific risk-states as stated by Harré (2000). Is the driver,
for example, actively seeking risky situations? Or is the driver aware of the risk but
accepts it anyway, maybe because it serves a *higher goal” - as for example arriving

at the destination in time when under time pressure.
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A short questionnaire on knowledge about risky situations might be suitable to assess
whether there are possibly knowledge gaps in this regard. Coupled to a simulator
session, this could be done, for example, by means of questions related to the
situation (after the simulator session, the driver will be asked questions to the specific
situations s/he encountered during the session). As for example, if the driver misses
to reduce his/her speed while passing a school, it could be asked if s/he knows about

the risk of that particular situation.

On the level of skills, we propose to introduce a short hazard perception test in order
to test the driver’s ability to detect possible hazardous situations. A hazard perception
test could be video-based (the driver views short videos where s/he is asked to press
a button when a hazard is detected) or simulator-based where hazardous situations
are simulated and it is assessed how these situations are handled. In order to assess
if a hazardous situation was detected (e.g. passing a school) it could be feasible to

either ask the driver (questions related to the situation) or assess eye-tracking data.

Measurement of

Competence Attitude Knowledge Skills
Regulation o survey: o survey: o simulator: situations
beliefs/attitude Knowledge with distractors
about about present (e.g. phone)
importance of danger of - active suppression
attention distractors of non-relevant
while driving information

Table 5.3 Specification measurement in regard to “requlatory competence”.

A short questionnaire on the beliefs about the importance of attention while driving
could give valuable information on the general attitude towards this aspect of driving.

Questions like

- "How important is it for the driver to be undistracted?”

- "Inas how far does distraction impose a safety risk for the driver?”
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could guide the item formulation process.

It could also be of interest to assess the level of knowledge a driver has about the
dangers of distractors in general. One item example could be to ask the driver to
estimate — given a specific speed - the distance driven without attending to the road

while texting.

Within a simulator session, the level of skills in regard to the competence of
regulation can be assessed:. A situation in which distractors are present (a call,
navigating the navigation system, etc.) could be constructed. It could then be

measured to what extent the driver engages in distracting activities.

Measurement of

Competence Attitude Knowledge Skills

Self-Appraisal o Survey: Beliefs o Survey: o Assessment of
about interplay Knowledge about driver skills
between risk - influencing (e.g. subjective
current state factors (for measurement:
of the driver - example fatigue) DSI)
and driving o Assessment of
skills state (e.g.
(‘normalization fatigue)
of risk’)

Table 5.4 Specification measurement in regard to “self-appraisal’”.

A short questionnaire can assess the driver’s attitude concerning the interplay of risk
- current state of the driver — and assessment of driving skills. Considering the self-
assessment of one's own current state, it could be of interest to assess the number
of times the driver has been driving when fatigued and whether this is considered as
a safety risk. The measurement could also be extended to the assessment of driving
skills and how this assessment influences the acceptance of risk (‘normalization of
risk’ — with higher level of self-evaluated driving skills, drivers also tend to accept

higher levels of risk). This could be measured, for example, by the means of
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subjective measurements (e.g. Driver Skill Inventory, DSI, Lajunen & Summala, 1995;

Spolander, 1983).

A short questionnaire on the level of knowledge a driver has in regard to influencing
factors, such as fatigue, drug use, etc. could indicate if knowledge gaps in this regard

might exist.

Table 5.5 gives a short averview of the suggested instruments in order to assess the

specific aspects of driver competences.

context information
(outward video, GPS

A ) objective tests
. ) visual observational .
survey, situative X (e.g. hazard driving
data (eye-tracking,

questions inward video) perception behavior data)
test)
A - risk assessment X X
K - risk assessment X X
S - risk assessment X X X X
A - regulation X X
K - regulation X X
S - regulation X X X
A - self appraisal X X
K- self appraisal X X
S - self appraisal X X X

A = attitude, K = knowledge, S = skill.

Table 5.5 Overview of instruments to assess aspects of driver competences.

As was discussed at the beginning of this section (see Figure 5.5), it is essential to
assess a) what kind of behaviour was shown and b) in which context. However, as was
already discussed in the previous chapters, it will be possible to assess the relevant
data to some extent, as for example preliminary context information (see Chapter 5).
Table 5.5 also shows that the assessment of attitude and knowledge related aspects
of the specific competences can mainly be assessed by means of surveys or situative
questions and therefore, subjective data. As will be discussed in Chapter 6, the use of
subjective data can be somewhat difficult in terms of validity. Although, within this

approach, the combination of subjective data and observable behaviour can be of
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great value as it allows assessing a broader picture of driving related competences.

In the next chapter using questionnaires for driver profiling is explored.
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6 Driver profiling based on questionnaires

In this chapter we examine the possibilities of using questionnaire data for driver
profiling. The general idea of using questionnaires is that these could be used to give
insight into why drivers behave in a risky manner and to make a distinction between
risky and safe drivers. If we can categorise drivers or grade drivers in terms of their
risk behaviour an option would be to evaluate the coaching programme for risky and
safe drivers. Furthermore, questionnaires can add information about the drivers that
cannaot be measured by IVMS and the mabile phone. A disadvantage of questionnaires
is however that self-reported behaviour could deviate from actual (driving) behaviour.
Questionnaires that could be used in MeBeSafe are for example related to

demographics, personality traits, attitude or self-reported driving behaviour.

Findings in this chapter are based on a literature review and an interview with a drivers
coach at a haulier contracted by Shell. In this chapter we first discuss the
demagraphics and the amount of driver experience that might have an influence on
driving behaviour and could therefore be used for driver profiling. Then we discuss
driver profiling based on personality traits and attitude related to driving behaviour.
The chapter ends with a conclusion on the possibility of using questionnaires for driver

profiling in the current MeBeSafe project.
6.1 Demographics and driving experience

Demographics and driving experience can be captured by asking the driver in a
guestionnaire or in an interview. In this literature review we explore what aspects
influence HGV driver behaviour related to demographics and driving experience. In
MeBeSafe deliverable 1.1 (Karlsson et al., 2017) several aspects were mentioned that
could affect driver behaviour, namely age, fitness to drive, ability of information
processing and action execution, gender, education and income, profession,
expertise/driving exposure and cultural differences. Some of these characteristics
also affect HGV driver behaviour, but not all are relevant. The gender of HGV drivers

for instance will be maostly male; a distinction between male and female drivers would
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therefore not be feasible in WP4 of MeBeSafe. Age and experience are factors that
could have an effect on driving behaviour for HGV drivers which could be looked at in

the project.

A literature review by Duke, Guest, and Bogus (2010) shows that younger heavy
vehicle drivers (27 years or younger) have an increased risk of crash involvement as
do drivers aged 63-68 years. A study in Finland showed trailer-truck drivers younger
than 30 years of age to have a 3.5 time higher risk of being responsible for an accident
compared to drivers over the age of 50 years (Hakkanen & Summala, 2007). In
contrary to the findings of Duke et al. (2010) a study by Guest, Bogges, and Duke.
(2014) has indicated that professional drivers in Australia beyond the age of 65 are
not at greater risk of traffic accidents. A study by Girotto (2016) indicates that less
years of professional driving experience is associated with a higher involverment in
accidents and near-miss accidents for Brazilian truck drivers, regardless of age,

substance abuse, working conditions and behaviour in traffic.

Additionally, in an interview with a driver coach at a haulier it was explained that they
viewed the amount of driving experience that drivers have at their company as an
important predictor of how safe their drivers’ behaviour is on the road. They stated
that when drivers had been working for a longer period of time at their company,
drivers drove safer, regardless of their age or the experience they had before joining
the company. Also mentioned was that a difference between driving behaviour was
noted between younger and older drivers; younger drivers tend to use the driver
assistance systems more than older drivers. They also highlighted that the type of
trips drivers undertake is an important factor to take into account. As some drivers
drive shorter trips and will spend more time on urban roads, and others will drive
more on the highway, furthermore workload might differ between trips. This again
highlights the importance of taking context into account for the coaching of driving

behaviour.
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Concluding from this, there are indications that age and driving experience or work
experience at a certain company could predict crash involvement or risky driving
behaviour, though not all studies show the same findings. Similarly, the study
described in Chapter 3 of this deliverable did not find an effect of age on the number
of harsh braking and speeding events. More research is needed to understand how
these factors precisely shape risky driving behaviour of HGV drivers before using

these factors for driver profiling in this MeBeSafe project.
6.2 Driving behaviour, personality traits and attitude

Besides looking at demographics and driving experience we looked at using
questionnaires that measure personality traits, attitude and self-reported driving

behaviour for driver profiling.

We therefore explored the use and validity of several scales that measure driving
behaviour or related personality traits and attitudes. One questionnaire was of
particular interest: the Manchester Driver Behaviour Questionnaire (DBQ) by Reason,
Manstead, Stradling, Baxter and Campbell (1990). The DBQ is a widely accepted
measure of aberrant driving behaviour and is often used to predict crash involvement.

Nevertheless, there are drawbacks when it comes to its validity.

In 2003, Lajunen and Summala tested the scale’s sensitivity to socially desirable
responses in different settings, and concluded that the DBQ is relatively insusceptible
to this bias. However, they did not test the DBQ's ability to predict actual crash
involvement. af Wahlberg, Dorn, and Kline (2011) did, and found that the DBQ can be
used to predict self-reported, but not actual past crash involverment. These results
are unsurprising, considering that research has shown that self-reported crash
involvement data does not correspond with archived crash involvement data (Arthur,
Bell, Edwards, Day, Tubre, & Tubre, 2005). A more recent study found that the DBQ,
in combination with the Driver Skill Inventory (DSI; Lajunen & Summala, 1995), can

predict traffic offenses but, again, not actual crash involvement (Martinussen, Meller,
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Prato, & Haustein, 2016). Despite concerns on the validity of the DBQ Martinussen,
Moller and Prato (2014) state that the DBQ is a valid measure to divide drivers into
sub-groups. Wishart, Freeman and Davey (2006) suggest that the DBQ might be used
to develop tailored interventions. However, the results of both studies are limited,

since they solely rely on self-reported data.

How problematic the use of self-reports actually is, is shown in a study by af
Wahlberg, Dorn, and Kline (2011), who found social desirability effects on self-
reported traffic accidents. In addition, research by af Wahlberg (2010) has shown that
the association between several leading questionnaires on driver characteristics and
self-reported crash involvement, as well as penalty points, is clearly weakened when
social desirability effects are controlled for. This was found for all investigated
scales: the violation scale of the DBQ, the Driving Anger Scale (DAS; Deffenbacher,
Oetting, & Lynch, 1994), the short version of the Sensation Seeking Scale (SSS; Slater,
2003) and the aggression scale of the Driver Behaviour Inventory (DBI; Gulian,
Glendon, Matthews, Davies, & Debney, 1988). Furthermore, a meta-analysis study by
af Wahlberg, Barraclough & Freeman (2015) on the DBQ indicated that drivers whom
report a high number of violations and/or crashes might do so because they spend
more time on the road, not because they violate more often. A study by Freeman,
Barraclough, Wishard, and Rowland(2014) looked into the validity of the DBQ based
on data collected from three Australian fleet samples. Regression analysis revealed
that road exposure was the best predictor of (self-reported) crash involverment,
rather than the factors measured by the DBQ. A study by Precht et al. (2017) looked
into the main factors that contribute to driving errors and traffic violations for car
drivers, using data collected in a large naturalistic driving study in the United States
(SHRP 2). The added value of naturalistic driving data is that questionnaire data can be
related to actual driving behaviour. Their study found that scores on a sensation
seeking scale did not predict violations or errors committed by car drivers as
identified on video, but also age, experience and the number of self-reported accidents

were nat related to the number of violations and errors. Anger, passenger presence
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and self-reported violations were the main factors associated with committed
violations. Surprise, high-risk visually distracting secondary tasks and passing through
an interchange were the main factors associated with committed errors. It should be
noted though that their study was based on driving behaviour of 38 car drivers, i.e.
the sample is relatively small and factors associated with violations and errors may

be different for truck drivers.

Saberg, Piccinini, and Engstrom (2015) conclude in a literature review on driving styles
and road safety that caution is needed for generalising self-reported data to actual
driving behaviour. For self-reported speed behaviour correlations of 0.6 have been
reported with actual driving behaviour, though for other behaviours correlations are
often weak. Regarding driver profiling, Saberg, Piccinini, and Engstrom (2015) state
that different driving styles might predict crash involvement, but that more research
that involves actual crash involvement is needed. According to the same reference,
studies so far have used various definitions and have assessed different aspects of
driving styles. Before assessments of driving styles can effectively be used for driver
profiling or the development of training programs, a common theoretical framework
should first be developed that captures different aspects of driving styles. The
authors provide the same argument for demographic and sociocultural factors like
age and driving experience. More research is needed to better understand how we can

use these individual driver characteristics for driver profiling.

Lastly, it should be noted that the existing questionnaires are research tools and are
not specifically developed for a coaching context. Considering this and all presented
information about the validity of existing driving behaviour questionnaires, especially
the most commonly used DBQ, we conclude that driver profiling based on the
discussed questionnaires that measure personality traits and attitude is not useful in

the present context.
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6.3 Implications based on the literature review

In this chapter the possibilities of driver profiling based on demographic

characteristics, driving experience, personality traits and attitude were investigated.

In terms of demographic characteristics age, the amount of driving experience drivers
have and the number of years working at the present company could be important
predictors for risky behaviour. Studies show that crash involvement is higher for
drivers that are younger and drivers that have less driving experience, so they might
drive riskier. These factors could therefore be used for driver profiling. However,
more research is recommended to understand how these factors precisely shape

risky driving behaviour before doing so.

Questionnaires that aim to capture driving behaviour or related personality traits and
attitudes, like the DBQ, are not considered useful for driver profiling since the validity
of these measures is low. Also, most research has focused on self-reported
offences, self-reported accidents and archived accidents. Caution is needed when
generalising self-reported behaviour to actual driving behaviour. More research is
needed looking into actual driving behaviour and driver characteristics using more

abjective methods in naturalistic settings.

To conclude this chapter, maore research is needed into driver profiling based on driver
characteristics before using driver profiling in the current MeBeSafe project.
Nevertheless, questionnaires and other subjective methods of measuring driver
characteristics and for example competences can provide insights into why a driver
acts in a risky manner while driving. Measuring driver characteristics with

guestionnaires or interviews could therefare still be of value.
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7 Conclusion and the representation of driver profiles

The objective of the work described in deliverable 4.1 was to investigate what data is
needed for coaching of heavy good vehicle drivers, how we can collect these data,
what variables are relevant for driver profiling and how we can use these variables
for driver profiling. In this chapter, an averview is presented on the possibilities of how
driving behaviour, the environment and driver characteristics can be measured, and
how driver profiles based on driving behaviour and the environment can be
represented. The results can be used as input for the design of coaching schemes
and the app that will measure and provide feedback on driving behaviour (Task 4.3)

and eventually for the field evaluation test in WP5.

We start the conclusion with a summary of what driving behaviour variables we wish
to improve with coaching and what variables can have an impact on driving behaviour,
followed by how we can measure these variables. We conclude with a suggestion of

how to represent driver profiles based on driving behaviour and context.
7.1 What driving behaviour variables do we wish to improve by coaching?

Risky driving behaviour can lead to crashes but by coaching drivers on their driving
behaviour the aim is to reduce risky driving, reduce crashes and consequently
increase traffic safety. The following variables are relevant coaching in this MeBeSafe
project: harsh braking, speeding, distraction, drowsiness/fatigue, close following,
harsh cornering, lane departure and optionally fuel consumption. These variables

have been labelled the Key Performance Indicators (KPIs).

Measuring driving behaviour in itself is often not sufficient, as behaviour should be put
into context whenever possible. The characteristics of the driving environment can
influence how a driver behaves. For example, in an urban environment drivers will
most likely have to brake harshly more often compared to when driving on a highway.
Drivers that drive more in urban environments will therefore show more harsh

braking behaviour compared to drivers that drive more often in rural environments.
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Consequently, a difference between drivers could be the result of differences in the
environment they are driving in, and not so much their actual driving behaviour. To
generate a fair representation of driving behaviour it is important to consider the
characteristics of the trips and situations the drivers are in. Furthermore, to
understand why a driver is behaving in a certain way we should look at the
characteristics of a driver. The behaviour of a driver can be influenced by
characteristics like personality, attitude, age, experience and competences. In this
deliverable, we examined how we can measure driving behaviour, the driving
environment, and driver characteristics, which can all be relevant for interpreting the

behaviour of a driver and therefore for coaching.

7.2 How can we measure driving behaviour, environment and driver

characteristics?

The possibility to measure any set of variables depends on the tools at hand. Figure
7.1 gives an overview of what driving behaviour variables (KPIs), driver and trip
characteristics that can be measured by IVMS, mobile phone, questionnaires and
cameras respectively. Listed are also the advantages and disadvantages per type of

measurement.
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Variables

IVMS

Mobile phone

Cameras

Questionnaires

Driving behaviour (KPI)

Harsh braking

Speeding

Possibly, combined
with map data

Possibly, combined
with map data

Eves off target
(distraction)

Inward-facing

Eye closure rate
(drowsiness)

Inward-facing

Close following

Outward-facing

Harsh cornering

Lane departures

Outward-facing

Fuel consumption

Location, route, date

Limited to general

1]
(8}
& | and time of a trip behaviour
j-
Q
T | Urban/rural, Possibly, combined [ Possibly, combined .
@ | ‘ . . Outward-facing
= |intersection with map data with map data
=
u] N : .
% Cond\t|0@5 (weather, P955|bty, combined SuiErdEsi
£ |congestion, etc.) with map data
o
(]
'rgu Competences
j—
Q
2 .
5 | Age. experience
Accurate All drivers can use | Additional Possible to
information. it (no need to information on the | measure
Advantages install expensive traffic situation background
equipment). and driver variables.
behaviour.

Disadvantages

Not all vehicles are
equipped with (the
same) systems.

We need to ensure
drivers turn the
device on.

Privacy issues for
inward-facing
cameras. Possibly
not allowed in
some countries.
Costs for installing
and cameras.

Validity issues.

Figure 7.1 Variables that can be measured with IVMS, mobile phone, cameras and questionnaires. A green rectangle
indicates that measuring is possible, yellow indicates that measuring is possible but that there are drawbacks, and
red indicates that measuring is not possible. Listed also are the advantages and disadvantages of the type of
measurement.
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The options that were looked at for measuring basic driving behaviour regarding
position, speed, braking, cornering, and the optional variable fuel consumption were
IVMS and mobile phone. Results show that roughly the same, but not all, KPI variables
can be measured by these devices. Although IVMS can measure certain variables
mare precisely than the mobile phone, a great disadvantage of IVMS is the fact that
not all vehicles have the same system installed. This is a problem, because the
software that is used to read the data from the IVMS needs to be adapted for every
system, making it a costly and time consuming endeavour to adapt software for each
new system. Also, data like speed limits, weather conditions, and type of road are
relatively easily combined with data collected by a mobile phone, but not as easily
with an IVMS system. Therefore, the mobile phone is a better option to use for

measuring driving behaviour in the current project.

Nonetheless, a lot of variables cannot be measured by mobile phone or IVMS (Figure
7.7). Some of these variables are related to driving behaviour (distraction, drowsiness,
close following and lane departures), as well as additional environment related
variables that provide information on the trip and situation the driver is in. Cameras
can capture additional driving behaviour as well as information on the environment.
Cameras would therefore be of great value for collecting additional information for
coaching and feedback provided by the app. Outward-facing cameras would give
more information on the conditions a driver is in, for example traffic density can be
measured and videos of relevant situations can be saved and shown to a driver.
Inward-facing cameras could provide information on distraction and drowsiness, both

important factors related to traffic safety.

There are however also some important disadvantages with using cameras that can
influence the project and the development of coaching schemes and app. Presumably
not all drivers will want to have cameras installed (especially inward-facing) in their
vehicle. During pilot tests we will further examine the readiness and acceptance by

HGV drivers to have cameras installed. In addition, the technology is relatively

MeBeSafe 16

RN

(®)



Deliverable 4.1

expensive. For the MeBeSafe project this means that not all trucks can be equipped
with cameras. Furthermore, for the usage and implementation of coaching schemes
and app after the MeBeSafe project, reliance on cameras could possibly make these

coaching measures too expensive.

The number of variables relevant for the current project that can be measured
accurately with questionnaires is relatively limited, and several studies point out that
the validity of guestionnaires measuring personality and driving behaviour is low.
However, gaining insight into why a driver behaves in a certain manner is only possible
by looking into competences, personality and attitudes, which are difficult to measure
other than by questionnaires, interviews or tests (simulator, hazard perception tests).
With questionnaires, the attitude towards coaching could also be measured. Since
more research is needed on using basic driver characteristics (age, gender, self-
reported behaviour etc.) for driver profiling and it is questionable at this point whether
clear relationships can be determined, the focus for now is on profiling based on
driver behaviour and the characteristics of the environment. Questionnaires can be
used mainly as extra input for initial data on demographics and for assessing

competence and attitude.
7.3 Representing driver profiles based on driving behaviour

We propose a representation of driver profiles based on driving behaviour in a “Traffic

Safety Wheel” (see Figure 7.2), wherein we can:

o Represent individual driver behaviour as variables relative to our main KPI
variables;

o Compare driver behaviour to fleet behaviour (see Figure 7.3);

o Visualise the amount of overlap in driving behaviour (see Figure 7.4) and;

o Make a distinction between behaviour in different conditions (see Figure 7.5).
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Figure 7.2 Traffic Safety Wheel wherein driving behaviour of one driver is visualised on seven different axes.

Traffic Safety Wheel

{ Speeding

Figure 7.3 Traffic Safety Wheel wherein driving behaviour of one driver can be compared to average driving
behaviour of the fleet.
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Figure 7.2 maps the behaviour of a specific driver on several KPl-axes. The shape that
results from this mapping gives an averview of how well a driver scores on each of
the KPI variables. A larger surface in the safety wheel implies that a driver shows
mare risky behaviour compared to a smaller surface in a safety wheel. Variables that
need more attention can be highlighted and axes can be left out in the figure. For
instance, when an inward-facing camera hasn't been used, eyes off road/target and

eve closure rate (drowsiness/fatigue) can be left out.

Figure 7.3 shows the profiles of a driver as well as his/her fleet. The visualization of
the profiles facilitates an evaluation of driver performance in relation to the fleet: it
can be easily seen on what variables a driver scores better/worse than the average

truck driver in a fleet.

What can also be visualized in the safety wheel are high degrees of “overlap” between
different KPI variables, as visualized by the exclamation mark in Figure 7.4. This can
be determined at the level of individual events, i.e. short periods of time in which
particular types of relevant driving behaviour occur at a particular place and time, and
which are measured by the data acquisition system. In the figure, an example is given
of harsh braking and close following. When a harsh braking event and a close
following event overlap, they are labelled as concurrent. A high event concurrency
between two variables means they are possibly causally related, because many of
the corresponding events occur at the same time; and this is naturally useful and
possibly important information for coaching. In the above example, this means that
when we coach risky close following behaviour, we will likely also influence harsh
braking behaviour. When drivers take more distance they will have more time to brake
and therefore have to brake less harshly. Event concurrency can be calculated for
each pair-wise combination of KPIs, as shown in the matrix depicted in Figure 7.4.
Coaching can be supported by, for example, selecting the combination with the highest
event concurrency, or by selecting combinations with a concurrency rate above a to-

be-chosen threshold.

MeBeSafe 19

RN

(®)



Deliverable 4.1
Traffic Safety Wheel
}&0& @\)\\Q
%, \\“
.9@’ Q@{’

Event concurrency matrix (%)

— | Speeding
— | = | Eyes off-road
— |~ | = | Harsh braking

Speeding

Eyes off-road
Harsh braking
(lose following
Lane departure
Eye closure rate
Harsh cornering

= | | Lo | o | Close following

— |ho | = | %= | = | Lane departure

— | = | | o |io |~ | Eye closurerate
= |io | | || = | = | Harsh corering

Figure 7.4 Traffic Safety Wheel wherein the overlap between two driving behaviour variables is visualised
(concurrency).

Another important feature of the safety wheel is that we are able to visualize the
effect different conditions and environment factors have on driving behaviour. This is
important, because driver behaviour can differ across circumstances. For example,
by distinguishing between behaviour in the city and behaviour on the highway, as is
shown in Figure 7.5, specific behaviour can be targeted for coaching under specific

circumstances.
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Figure 7.5 Traffic Safety Wheel wherein driver behaviour is visualised in different contexts, behaviour in the city
and behaviour on the highway.

We suggest a three-step approach to use driver profiles in support of coaching:

1) Map the driver profile on the safety wheel and look at the event
concurrencies. If there is a combination of KPIs with a high event
concurrency rate, these KPIs can be the first focus for coaching. The
reason for this is that by improving one KPI, the other KPI(s) will likely
improve as well;

2) Determine under what circumstances risky driving behaviour is most
prevalent. For example, coaching may be most relevant at highways,
and within highways focusing only on junctions, etc. This can be
visualised in the safety wheel;

3) If possible, investigate the underlying causes of risky driving behaviour
by looking at the competences of a driver or ather driver characteristics.

This can be done using questionnaires or interviews.
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7.4 Concluding remarks

In this deliverable we have focused on capturing driving behaviour and the driving
context in driver profiles. With regard to technology, our recommendation is to
measure driving behaviour and context with a mobile phone, augmented with inward-
and outward-facing cameras where possible. The disadvantages of using cameras
need to be kept in mind though; the installation of cameras brings more expenses
compared to using only mobile phones and there are privacy and acceptance issues

for drivers and due to legislation in certain countries.

In terms of driver profiling, we have proposed the Traffic Safety Wheel, a
representation of driver profiles wherein we can compare driver behaviour with fleet
behaviour across varying driving contexts. The safety wheel as presented could serve
as a foundation for driver profiles, but it is not yet intended to use directly as
visualization for drivers — even though it can be the basis for it. For the latter purpose,
the safety wheel should first be tested by HGV drivers and usability experts on visual
appeal and ease of use, possibly followed by a redesign. Furthermore, in the app used
on the mobile phone and for coaching there could be an additional focus on
emphasizing positive driving behaviour, next to risky behaviour. Positive driving
behaviour is not yet most naturally represented in the Traffic Safety Wheel. But could
be visualised for example by using a “positive” green colour as background colour,
when variable values are close to the centre of the Traffic Safety Wheel mare of the
green colour is shown. Another option would be to use a kind of “bull's eye”
visualization. The Traffic Safety Wheel needs more development before it can be used

in the MeBeSafe project.

Based on the results described in this deliverable further decisions can be made on
what driver profiles can be used and how data should be collected for Work Package

4,
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